forked from ChristopherMayes/lume-impact-live-demo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_vcc_image.py
360 lines (228 loc) · 8.12 KB
/
get_vcc_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/env python
# coding: utf-8
# # Live VCC image data -> distgen xy_dist file
#
# See https://github.com/slaclab/lcls-lattice/blob/master/distgen/models/cu_inj/vcc_image/vcc_image.ipynb for a better explanation
# In[1]:
import epics
import numpy as np
import os
import h5py
from lcls_live.tools import isotime
import matplotlib.pyplot as plt
import logging
logger = logging.getLogger(__name__)
# In[2]:
# Nicer plotting
import matplotlib.pyplot as plt
get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'")
# # EPICS tools
# In[3]:
def caget_dict(names):
return dict(zip(names, epics.caget_many(names)))
def save_pvdata(filename, pvdata, attrs=None):
logger.info(f"Writing {filename}")
with h5py.File(filename, 'w') as h5:
if attrs:
for k, v in attrs.items():
h5.attrs[k] = v
for k, v in pvdata.items():
h5[k] = v
# # Image tools
# In[4]:
from skimage.filters import sobel
from skimage.util import img_as_ubyte
from skimage.segmentation import watershed
from skimage.filters.rank import median
from skimage.morphology import disk
def isolate_image(img, fclip=0.08):
"""
Uses a masking technique to isolate the VCC image
"""
img=img.copy()
# Clip lowest fclip fraction
img[img < np.max(img)* fclip] = 0
# Filter out hot pixels to use aas a mask
# https://scikit-image.org/docs/0.12.x/auto_examples/xx_applications/plot_rank_filters.html
img2 = median(img_as_ubyte(img), disk(2))
elevation_map = sobel(img2)
markers = np.zeros_like(img2)
# TODO: tweak these numbers
markers[img2 < .1] = 1
markers[img2 > .2] = 2
# Wateshed
segmentation = watershed(elevation_map, markers)
# Set to zero in original image
img[np.where(segmentation != 2)] = 0
#
ixnonzero0 = np.nonzero(np.sum(img2, axis=1))[0]
ixnonzero1 = np.nonzero(np.sum(img2, axis=0))[0]
i0, i1, j0, j1 = ixnonzero0[0], ixnonzero0[-1], ixnonzero1[0], ixnonzero1[-1]
cutimg = img[i0:i1,j0:j1]
return cutimg
# # PVs
# In[5]:
LCLS_VCC_PV = {
'array': 'CAMR:IN20:186:IMAGE',
'size_x': 'CAMR:IN20:186:N_OF_COL',
'size_y': 'CAMR:IN20:186:N_OF_ROW',
'resolution': 'CAMR:IN20:186:RESOLUTION',
'resolution_units': 'CAMR:IN20:186:RESOLUTION.EGU'
}
#epics.caget_many(LCLS_VCC_PV.values())
# In[6]:
LCLS2_VCC_PV = {
'array': 'CAMR:LGUN:950:Image:ArrayData',
'size_x': 'CAMR:LGUN:950:Image:ArraySize0_RBV',
'size_y': 'CAMR:LGUN:950:Image:ArraySize1_RBV',
'resolution': 'CAMR:LGUN:950:RESOLUTION',
'resolution_units': 'CAMR:LGUN:950:RESOLUTION.EGU'
}
#epics.caget_many(LCLS_VCC_PV.values())
# In[7]:
FACET_VCC_PV = {
'array': 'CAMR:LT10:900:Image:ArrayData',
'size_x': 'CAMR:LT10:900:ArraySizeX_RBV',
'size_y': 'CAMR:LT10:900:ArraySizeY_RBV',
'resolution': 'CAMR:LT10:900:RESOLUTION',
'resolution_units': 'CAMR:LT10:900:RESOLUTION.EGU'
}
# Master dict
VCC_DEVICE_PV = {
'CAMR:LGUN:950':LCLS2_VCC_PV,
'CAMR:IN20:186':LCLS_VCC_PV,
'CAMR:LT10:900':FACET_VCC_PV
}
#epics.caget_many(FACET_VCC_PV.values())
# # Get
# In[8]:
def get_epics_vcc_data(epics, vcc_device, wait_for_good=True, good_std=4):
"""
epics,
wait_for_good: bool, default True
will repeat epics.caget_many until the array data
seems like an image
"""
# Get actual PVs
d = VCC_DEVICE_PV[vcc_device].copy()
trials = 0
if wait_for_good:
array_pvname = d.pop('array')
found = False
m = epics.PV(array_pvname)
ii = 0
while not found:
ii += 1
if ii % 10 == 0:
print(f"Waited {ii} times for good {array_pvname}")
trials += 1
a = m.get()
if a is None:
continue
if a.std() > good_std:
found = True
# Get regular pvs
pvdata = caget_dict(d.values())
isotime_found = isotime()
pvdata[array_pvname] = a
else:
pvdata = caget_dict(d.values())
isotime_found = isotime()
#out = {'pvdata': pvdata, 'isotime': isotime_found}
return pvdata, isotime_found
#res = get_epics_vcc_data(epics, 'CAMR:LGUN:950', wait_for_good=True)
#res
# In[9]:
def vcc_image_data_from_pvdata(pvdata, vcc_device):
"""
Process raw pvdata dict into image data
"""
d = VCC_DEVICE_PV[vcc_device]
image_data = {}
for k, pvname in d.items():
image_data[k] = pvdata[pvname]
# Make consistent units
if image_data['resolution_units'] == 'um/px':
image_data['resolution_units'] = 'um'
a = image_data.pop('array')
n = len(a)
print(n)
# Try to guess shape, because PVs are sometimes bad (None)
if n == 1040 * 1392:
shape = (1040 , 1392)
elif n == 1024 * 1024:
shape = (1024 , 1024)
else:
shape = (image_data['size_y'], image_data['size_x'])
image_data['image'] = a.reshape(shape)
return image_data
#vcc_image_data_from_pvdata(res[0], 'CAMR:LGUN:950')
# In[10]:
def get_vcc_data(epics, vcc_device, pvdata=None, wait_for_good=True, good_std=4, save_path=None):
"""
wait_for_good: bool, default True
will repeat epics.caget_many until the array data
seems like an image
"""
pvdata, isotime_found = get_epics_vcc_data(epics, vcc_device, wait_for_good=wait_for_good, good_std=good_std)
if save_path:
assert os.path.exists(save_path)
fname = os.path.join(save_path, f"pvdata_{vcc_device}_{isotime_found}.h5")
save_pvdata(fname, pvdata, attrs={'isotime':isotime_found})
image_data = vcc_image_data_from_pvdata(pvdata, vcc_device)
return image_data
#out = get_vcc_data(epics, 'CAMR:LGUN:950', save_path='vcc_archive')
#plt.imshow(out['image'])
# In[11]:
def write_distgen_xy_dist(filename, image, resolution, resolution_units='m'):
"""
Writes image data in distgen's xy_dist format
Returns the absolute path to the file written
"""
# Get width of each dimension
widths = resolution * np.array(image.shape)
center_y = 0
center_x = 0
# Form header
header = f"""x {widths[1]} {center_x} [{resolution_units}]
y {widths[0]} {center_y} [{resolution_units}]"""
# Save with the correct orientation
np.savetxt(filename, np.flip(image, axis=0), header=header, comments='')
return os.path.abspath(filename)
# In[12]:
def get_live_distgen_xy_dist(filename='test.txt', vcc_device='CAMR:IN20:186', pvdata=None, fclip=0.08):
# Get data
image_data = get_vcc_data(epics, vcc_device, pvdata)
image = image_data['image']
cutimg = isolate_image(image, fclip=fclip)
assert cutimg.ptp() > 0
fout = write_distgen_xy_dist(filename, cutimg,
image_data['resolution'],
resolution_units=image_data['resolution_units'])
return fout, image, cutimg
# import matplotlib.pyplot as plt
# %config InlineBackend.figure_format = 'retina'
# fout, i1, i2 = get_live_distgen_xy_dist(vcc_device='CAMR:LGUN:950', fclip=0.08)
# # #fout, i1, i2 = get_live_distgen_xy_dist(vcc_device='CAMR:LT10:900', fclip=0.08)
# #
# plt.imshow(i2)
# fout
# #
# In[13]:
#!cp test.txt $LCLS_LATTICE/distgen/models/sc_inj/vcc_image/laser_image.txt
# In[14]:
# #gfile = os.path.expandvars('$FACET2_LATTICE/distgen/models/f2e_inj/vcc_image/distgen.yaml')
# gfile = os.path.expandvars('$LCLS_LATTICE/distgen/models/sc_inj/vcc_image/distgen.yaml')
# from distgen import Generator
#
# G = Generator(gfile)
# G['xy_dist:file'] = fout
# G['n_particle'] = 100000
# G.run()
# G.particles.plot('x', 'y', bins=100, figsize=(5,5))
# In[15]:
# PVDATA = dict(zip(FACET_VCC_PV.values(), epics.caget_many(FACET_VCC_PV.values())))
# PVDATA
# In[16]:
# fout, i1, i2 = get_live_distgen_xy_dist(vcc_device='CAMR:LT10:900', pvdata=PVDATA)
# plt.imshow(i2)