-
Notifications
You must be signed in to change notification settings - Fork 1
/
progrres.py
executable file
·81 lines (76 loc) · 3.67 KB
/
progrres.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#! /usr/bin/env python3
#
# Process the results of an experiment run using ./progrexp.py
#
# Copyright 2021 Matteo Riondato <rionda@acm.org>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import sys
import pandas as pd
import numpy as np
import util
import progrexp
def main():
# Check the sanity of the command line arguments
progrexp.checkArgsSanity()
expType = sys.argv[1]
confFile = sys.argv[-1]
# Get the conf
if expType == "mult":
reqConfs = ("epsilons", "multipliers")
else:
sys.exit("support for 'iter' experiment type not implemented yet")
conf = util.getConf(confFile, reqConfs + ("logdir", "resdir", "exactdir"))
# Collect exact results, if present.
exactPath = os.path.join(conf["exactdir"], conf["name"] + ".json")
if os.path.exists(exactPath):
print("Collecting exact results")
exact = util.parseJSONFromFile(exactPath)
else:
exact = {"results": None, "total_time": 0}
# Collect the approximate results
df = util.getResults(conf, reqConfs, expType, exact["results"])
df.drop(columns=["delta", "mctrials"])
# Analyze the results
table = df.groupby(["method", "set_epsilon", "multiplier"]).agg(
# eps_min=pd.NamedAgg(column="epsilon", aggfunc=np.min),
eps_median=pd.NamedAgg(column="epsilon", aggfunc=np.median),
# eps_max=pd.NamedAgg(column="epsilon", aggfunc=np.max),
# epsratio_min=pd.NamedAgg(column="epsratio", aggfunc=np.min),
epsratio_median=pd.NamedAgg(column="epsratio", aggfunc=np.median),
# epsratio_max=pd.NamedAgg(column="epsratio", aggfunc=np.max),
# nomc_epsilon_min=pd.NamedAgg(column="nomc_epsilon", aggfunc=np.min),
nomc_epsilon_median=pd.NamedAgg(column="nomc_epsilon", aggfunc=np.median),
# nomc_epsilon_max=pd.NamedAgg(column="nomc_epsilon", aggfunc=np.max),
# samples_min=pd.NamedAgg(column="samples", aggfunc=np.min),
samples_median=pd.NamedAgg(column="samples", aggfunc=np.median),
# samples_max=pd.NamedAgg(column="samples", aggfunc=np.max),
# nomc_samples_min=pd.NamedAgg(column="nomc_samples", aggfunc=np.min),
# nomc_samples_median=pd.NamedAgg(column="nomc_samples", aggfunc=np.median),
# nomc_samples_max=pd.NamedAgg(column="nomc_samples", aggfunc=np.max),
# iterations_min=pd.NamedAgg(column="iterations", aggfunc=np.min),
iterations_median=pd.NamedAgg(column="iterations", aggfunc=np.median),
# iterations_max=pd.NamedAgg(column="iterations", aggfunc=np.max),
# max_iterations_min=pd.NamedAgg(column="max_iterations", aggfunc=np.min),
max_iterations_median=pd.NamedAgg(column="max_iterations", aggfunc=np.median),
# max_iterations_max=pd.NamedAgg(column="max_iterations", aggfunc=np.max),
# runtime_min=pd.NamedAgg(column="total_time", aggfunc=np.min),
# runtime_max=pd.NamedAgg(column="total_time", aggfunc=np.max),
# runtime_median=pd.NamedAgg(column="total_time", aggfunc=np.median),
)
outfile = os.path.join(conf["resdir"], f'progressive-{conf["name"]}.tex')
with open(outfile, 'wt') as out:
out.write(table.to_latex(multirow=True))
if __name__ == "__main__":
main()