diff --git a/emix-simulations/mm_hh_glial_calibration_ODE.py b/emix-simulations/mm_two_tags_calibration_ODE.py similarity index 100% rename from emix-simulations/mm_hh_glial_calibration_ODE.py rename to emix-simulations/mm_two_tags_calibration_ODE.py diff --git a/emix-simulations/run_calibration_ODE.py b/emix-simulations/run_calibration_two_tags_ODE.py similarity index 93% rename from emix-simulations/run_calibration_ODE.py rename to emix-simulations/run_calibration_two_tags_ODE.py index 26505e9..215ebe6 100644 --- a/emix-simulations/run_calibration_ODE.py +++ b/emix-simulations/run_calibration_two_tags_ODE.py @@ -2,7 +2,7 @@ import dolfin as df import numpy as np import matplotlib.pyplot as plt -import mm_hh_glial_calibration_ODE as ode +import mm_two_tags_calibration_ODE as ode from knpemidg.membrane import MembraneModel from collections import namedtuple @@ -104,7 +104,7 @@ ax[3].set_title("Na_e") #ax[4].set_title("Na_i") plt.tight_layout() -fig.savefig("ode.png") +fig.savefig("results/figures/ode.png") #plt.show() plt.close() @@ -112,25 +112,25 @@ plt.plot(potential_history_n[:, 2]) #plt.ylim([-72, -70]) plt.tight_layout() -fig.savefig("phiM_n.png") +fig.savefig("results/figures/phiM_n.png") fig = plt.figure() plt.plot(potential_history_g[:, 2]) #plt.ylim([-72, -70]) plt.tight_layout() -fig.savefig("phiM_g.png") +fig.savefig("results/figures/phiM_g.png") fig = plt.figure() plt.plot(K_e_history[:, 2]) #plt.ylim([4, 4.1]) plt.tight_layout() -fig.savefig("K_e.png") +fig.savefig("results/figures/K_e.png") fig = plt.figure() plt.plot(Na_e_history[:, 2]) #plt.ylim([99, 100]) plt.tight_layout() -fig.savefig("Na_e.png") +fig.savefig("results/figures/Na_e.png") # TODO: # - consider a test where we have dy/dt = A(x)y with y(t=0) = y0 diff --git a/emix-simulations/run_calibration_two_tags.py b/emix-simulations/run_calibration_two_tags_PDE.py similarity index 100% rename from emix-simulations/run_calibration_two_tags.py rename to emix-simulations/run_calibration_two_tags_PDE.py