-
Notifications
You must be signed in to change notification settings - Fork 110
/
solution.cpp
110 lines (86 loc) · 3.47 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/* Hidden stub code will pass a root argument to the function below. Complete the function to solve the challenge. Hint: you may want to write one or more helper functions.
// Source code is been hidden here.
The Node struct is defined as follows:
struct Node {
int data;
Node* left;
Node* right;
}
*/
// HELPER CODE FOR QUICKSORT WHICH SORTS THE ELEMENTS IN AN ARRAY..
// You can Use any sorting algorithms.
// C++ STL sort() cannot be used as global environment not given we writing code into a class solution
void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
int partition (int arr[], int low, int high)
{
int pivot = arr[high]; // pivot
int i = (low - 1); // Index of smaller element
for (int j = low; j <= high - 1; j++)
{
// If current element is smaller than the pivot
if (arr[j] < pivot)
{
i++; // increment index of smaller element
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
void quickSort(int arr[], int low, int high)
{
if (low < high)
{
/* pi is partitioning index, arr[p] is now
at right place */
int pi = partition(arr, low, high);
// Separately sort elements before
// partition and after partition
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
/*
Main Properties of Binary Search Trees -
1. It doesn't contain duplicates.
2. It has its inorder travel in Sorted Order.
Checking for these two conditions.
*/
// Program to store the inorder traversal of the Tree given into a vector passed as an argument to the function [as reference].
void inorder_trvsl_vector(Node *root, vector<int>& v)
{
if( root == NULL ) // base condition if root is NULL simply return;
{
return;
}
// Call for Left subtree Then store data and then move to right subtree;
inorder_trvsl_vector(root->left,v);
v.push_back(root->data);
inorder_trvsl_vector(root->right,v);
}
// Main function to check If the given Tree is a Binary Search Tree Or not.
bool checkBST(Node* root)
{
vector<int> v; // Vector v created for Storing Inorder Traversal
inorder_trvsl_vector(root,v); // Calling function.
int n = v.size();
int a[n]; // Creating a duplicate array to be sorted and then compared
for(int i =0;i<n;i++)
{
a[i]=v[i]; // Duplicating Inorder Vector and Array;
}
quickSort(a,0,n-1); // Sorting Array by usig quicksort function.
for(int i = 0;i<n;i++)
{
if(a[i]!=v[i] || a[i]==a[i+1]) // *** If array after sorting is not equal to the Inorder vector means Inorder vector is Unsorted - Not a BST
return false; // *** If a duplicate present - Not a BST { a[i]==a[i+1] }
}
return true; // Else it is a BST returning true;
}
// Time complexity - O(number of nodes) = O(n)
// Space complexity - O(number of nodes) = O(n)