forked from BelfrySCAD/BOSL2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nurbs.scad
594 lines (567 loc) · 35.3 KB
/
nurbs.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/////////////////////////////////////////////////////////////////////
// LibFile: nurbs.scad
// B-Splines and Non-uniform Rational B-Splines (NURBS) are a way to represent smooth curves and smoothly curving
// surfaces with a set of control points. The curve or surface is defined by
// the control points and a set of "knot" points. The NURBS can be "clamped" in which case the curve passes through
// the first and last point, or they can be "closed" in which case the first and last point are coincident. Also possible
// are "open" curves which do not necessarily pass through any of their control points. Unlike Bezier curves, a NURBS
// can have an unlimited number of control points and changes to the control points only affect the curve locally.
//
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/nurbs.scad>
// FileGroup: Advanced Modeling
// FileSummary: NURBS and B-spline curves and surfaces.
//////////////////////////////////////////////////////////////////////
include<BOSL2/std.scad>
include<BOSL2/beziers.scad>
// Section: NURBS Curves
// Function: nurbs_curve()
// Synopsis: Computes one more more points on a NURBS curve.
// SynTags: Path
// Topics: NURBS Curves
// See Also: debug_nurbs()
// Usage:
// pts = nurbs_curve(control, degree, splinesteps, [mult=], [weights=], [type=], [knots=]);
// pts = nurbs_curve(control, degree, u=, [mult=], [weights=], [type=], [knots=]);
// Description:
// Compute the points specified by a NURBS curve. You specify the NURBS by supplying the control points, knots and weights. and knots.
// Only the control points are required. The knots and weights default to uniform, in which case you get a uniform B-spline.
// You can specify endpoint behavior using the `type` parameter. The default, "clamped", gives a curve which starts and
// ends at the first and last control points and moves in the tangent direction to the first and last control point segments.
// If you request an "open" spline you get a curve which starts somewhere in the middle of the control points.
// Finally, a "closed" curve is a one that starts where it ends. Note that each of these types of curve require
// a different number of knots.
// .
// The control points are the most important control over the shape
// of the curve. You must have at least p+1 control points for clamped and open NURBS. Unlike a bezier, there is no maximum
// number of control points. A single NURBS is more like a bezier **path** than like a single bezier spline.
// .
// A NURBS or B-spline is a curve made from a moving average of several Bezier curves. The knots specify when one Bezier fades
// away to be replaced by the next one. At generic points, the curves are differentiable, but by increasing knot multiplicity, you
// can decrease smoothness, or even produce a sharp corner. The knots must be an ascending sequence of values, but repeating values
// is OK and controls the smoothness at the knots. The easiest way to specify the knots is to take the default of uniform knots,
// and simply set the multiplicity to create repeated knots as needed. The total number of knots is then the sum of the multiplicity
// vector. Alternatively you can simply list the knots yourself. Note that regardless of knot values, the domain of evaluation
// for u is always the interval [0,1], and it will be scaled to give the entire valid portion of the curve you have chosen.
// If you give both a knot vector and multiplicity then the multiplicity vector is appled to the provided knots.
// For an open spline the number of knots must be `len(control)+p+1`. For a clamped spline the number of knots is `len(control)-p+1`,
// and for a closed spline you need `len(control)+1` knots. If you are using the default uniform knots then the way to
// ensure that you have the right number is to check that `sum(mult)` is either not set or equal to the correct value.
// .
// You can use this function to evaluate the NURBS at `u`, which can be a single point or a list of points. You can also
// use it to evaluate the NURBS over its entire domain by giving a splinesteps value. This specifies the number of segments
// to use between each knot and guarantees a point exactly at each knot. This may be important if you set the knot multiplicity
// to the degree somewhere in your curve, which creates a corner at the knot, because it guarantees a sharp corner regardless
// of the number of points.
// Arguments:
// control = list of control points in any dimension
// degree = degree of NURBS
// splinesteps = evaluate whole spline with this number of segments between each pair of knots
// ---
// u = list of values or range in the interval [0,1] where the NURBS should be evaluated
// mult = list of multiplicities of the knots. Default: all 1
// weights = vector whose length is the same as control giving weights at each control point. Default: all 1
// type = One of "clamped", "closed" or "open" to define end point handling of the spline. Default: "clamped"
// knots = List of knot values. Default: uniform
// Example(2D,NoAxes): Compute some points and draw a curve and also some specific points:
// control = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// curve = nurbs_curve(control,2,splinesteps=16);
// pts = nurbs_curve(control,2,u=[0.4,0.8]);
// stroke(curve);
// color("red")move_copies(pts) circle(r=1.5,$fn=16);
// Example(2D,NoAxes): Compute NURBS points and make a polygon
// control = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// curve = nurbs_curve(control,2,splinesteps=16,type="closed");
// polygon(curve);
// Example(2D,NoAxes): Simple quadratic uniform clamped b-spline with some points computed using splinesteps.
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,2);
// npts = nurbs_curve(pts, 2, splinesteps=3);
// color("red")move_copies(npts) circle(r=1);
// Example(2D,NoAxes): Simple quadratic uniform clamped b-spline with some points computed using the u parameter. Note that a uniform u parameter doesn't necessarily sample the curve uniformly.
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,2);
// npts = nurbs_curve(pts, 2, u=[0:.2:1]);
// color("red")move_copies(npts) circle(r=1);
// Example(2D,NoAxes): Same control points, but cubic
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,3);
// Example(2D,NoAxes): Same control points, quadratic and closed
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,2,type="closed");
// Example(2D,NoAxes): Same control points, cubic and closed
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,3,type="closed");
// Example(2D,NoAxes): Ten control points, quadratic, clamped
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,2);
// Example(2D,NoAxes): Same thing, degree 4
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4);
// Example(2D,NoAxes): Same control points, degree 2, open. Note it doesn't reach the ends
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,2, type="open");
// Example(2D,NoAxes): Same control points, degree 4, open. Note it starts farther from the ends
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4,type="open");
// Example(2D,NoAxes): Same control points, degree 2, closed
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,2,type="closed");
// Example(2D,NoAxes): Same control points, degree 4, closed
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4,type="closed");
// Example(2D,Med,NoAxes): Adding weights
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// weights = [1,1,1,3,1,1,3,1,1,1];
// debug_nurbs(pts,4,type="clamped",weights=weights);
// Example(2D,NoAxes): Using knot multiplicity with quadratic clamped case. Knot count is len(control)-degree+1 = 9. The multiplicity 2 knot creates a corner for a quadratic.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,1,1,2,1,1,1,1];
// debug_nurbs(pts,2,mult=mult,show_knots=true);
// Example(2D,NoAxes): Using knot multiplicity with quadratic clamped case. Two knots of multiplicity 2 gives two corners
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,1,1,2,2,1,1];
// debug_nurbs(pts,2,mult=mult,show_knots=true);
// Example(2D,NoAxes): Using knot multiplicity with cubic clamped case. Knot count is now 8. We need multiplicity equal to degree (3) to create a corner.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,3,1,1,1,1];
// debug_nurbs(pts,3,mult=mult,show_knots=true);
// Example(2D,NoAxes): Using knot multiplicity with cubic closed case. Knot count is now len(control)+1=11. Here are three corners.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,3,1,3,3];
// debug_nurbs(pts,3,mult=mult,type="closed",show_knots=true);
// Example(2D,NoAxes): Explicitly specified knots only change the quadratic clamped curve slightly. Knot count is len(control)-degree+1 = 9.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,5,9,13,14,19,21];
// debug_nurbs(pts,2);
// Example(2D,NoAxes): Combining explicit knots with mult for the quadratic curve to add a corner
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,9,13,14,19,21];
// mult = [1,1,1,2,1,1,1,1];
// debug_nurbs(pts,2,knots=knots,mult=mult);
// Example(2D,NoAxes): Directly repeating a knot in the knot list to create a corner for a cubic spline
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,13,13,13,19,21];
// debug_nurbs(pts,3,knots=knots);
// Example(2D,NoAxes): Open cubic spline with explicit knots
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,13,13,13,19,21,27,28,29,40,42,44];
// debug_nurbs(pts,3,knots=knots,type="open");
// Example(2D,NoAxes): Closed quintic spline with explicit knots
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,13,13,13,19,21,27,28,33];
// debug_nurbs(pts,5,knots=knots,type="closed");
// Example(2D,Med,NoAxes): Closed quintic spline with explicit knots and weights
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// weights = [1,2,3,4,5,6,7,6,5,4];
// knots = [0,1,3,13,13,13,19,21,27,28,33];
// debug_nurbs(pts,5,knots=knots,weights=weights,type="closed");
// Example(2D,NoAxes): Circular arcs are possible with NURBS. This example gives a semi-circle
// control = [[1,0],[1,2],[-1,2],[-1,0]];
// w = [1,1/3,1/3,1];
// debug_nurbs(control, 3, weights=w, width=0.1, size=.2);
// Example(2D,NoAxes): Gluing two semi-circles together gives a whole circle. Note that this is a clamped not closed NURBS. The interface uses a knot of multiplicity 3 where the clamped ends of the semi-circles meet.
// control = [[1,0],[1,2],[-1,2],[-1,0],[-1,-2],[1,-2],[1,0]];
// w = [1,1/3,1/3,1,1/3,1/3,1];
// debug_nurbs(control, 3, splinesteps=16,weights=w,mult=[1,3,1],width=.1,size=.2);
// Example(2D,NoAxes): Circle constructed with type="closed"
// control = [[1,0],[1,2],[-1,2],[-1,0],[-1,-2],[1,-2]];
// w = [1,1/3,1/3,1,1/3,1/3];
// debug_nurbs(control, 3, splinesteps=16,weights=w,mult=[1,3,3],width=.1,size=.2,type="closed",show_knots=true);
function nurbs_curve(control,degree,splinesteps,u, mult,weights,type="clamped",knots) =
assert(num_defined([splinesteps,u])==1, "Must define exactly one of u and splinesteps")
is_finite(u) ? nurbs_curve(control,degree,[u],mult,weights,type=type)[0]
: assert(is_undef(splinesteps) || (is_int(splinesteps) || splinesteps>0), "splinesteps must be a positive integer")
let(u=is_range(u) ? list(u) : u)
assert(is_undef(u) || (is_vector(u) && min(u)>=0 && max(u)<=1), "u must be a list of points on the interval [0,1] or a range contained in that interval")
is_def(weights) ? assert(is_vector(weights, len(control)), "Weights should be a vector whose length is the number of control points")
let(
dim = len(control[0]),
control = [for(i=idx(control)) [each control[i]*weights[i],weights[i]]],
curve = nurbs_curve(control,degree,u=u,splinesteps=splinesteps, mult=mult,type=type)
)
[for(pt=curve) select(pt,0,-2)/last(pt)]
:
let(
uniform = is_undef(knots),
dum=assert(in_list(type, ["closed","open","clamped"]), str("Unknown nurbs spline type", type))
assert(type=="closed" || len(control)>=degree+1, str(type," nurbs requires at least degree+1 control points"))
assert(is_undef(mult) || is_vector(mult), "mult must be a vector"),
badmult = is_undef(mult) ? []
: [for(i=idx(mult)) if (!(
is_int(mult[i])
&& mult[i]>0
&& (mult[i]<=degree
|| (type!="closed"
&& mult[i]==degree+1
&& (i==0 || i==len(mult)-1)
)
)
)) i],
dummy0 = assert(badmult==[], str("mult vector should contain positive integers no larger than the degree, except at ends of open splines, ",
"where degree+1 is allowed. The mult vector has bad values at indices: ",badmult))
assert(is_undef(knots) || is_undef(mult) || len(mult)==len(knots), "If both mult and knots are given they must be vectors of the same length")
assert(is_undef(mult) || type!="clamped" || sum(mult)==len(control)-degree+1,
str("For ",type," spline knot count (sum of multiplicity vector) must be ",len(control)-degree+1," but is instead ",mult?sum(mult):0))
assert(is_undef(mult) || type!="closed" || sum(mult)==len(control)+1,
str("For closed spline knot count (sum of multiplicity vector) must be ",len(control)+1," but is instead ",mult?sum(mult):0))
assert(is_undef(mult) || type!="open" || sum(mult)==len(control)+degree+1,
str("For closed spline knot count (sum of multiplicity vector) must be ",len(control)+degree+1," but is instead ",mult?sum(mult):0)),
control = type=="open" ? control
: type=="clamped" ? control //concat(repeat(control[0], degree),control, repeat(last(control),degree))
: /*type=="closed"*/ concat(control, select(control,count(degree))),
mult = !uniform ? mult
: type=="clamped" ? assert(is_undef(mult) || mult[0]==1 && last(mult)==1,"For clamped b-splines, first and last multiplicity must be 1")
[degree+1,each slice(default(mult, repeat(1,len(control)-degree+1)),1,-2),degree+1]
: is_undef(mult) ? repeat(1,len(control)+degree+1)
: type=="open" ? mult
: /* type=="closed" */
let( // Closed spline requires that we identify first and last knots and then step at same
// interval spacing periodically through the knot vector. This means we pick up the first
// multiplicity minus 1 and have to add it to the last multiplicity.
lastmult = last(mult)+mult[0]-1,
dummy=assert(lastmult<=degree, "For closed spline, first and last knot multiplicity cannot total more than the degree+1"),
adjlast = [
each select(mult,0,-2),
lastmult
]
)
_extend_knot_mult(adjlast,1,len(control)+degree+1),
knot = uniform && is_undef(mult) ? lerpn(0,1,len(control)+degree+1)
: uniform ? [for(i=idx(mult)) each repeat(i/(len(mult)-1),mult[i])]
: let(
xknots = is_undef(mult)? knots
: assert(len(mult) == len(knots), "If knot vector and mult vector must be the same length")
[for(i=idx(mult)) each repeat(knots[i], mult[i])]
)
type=="open" ? assert(len(xknots)==len(control)+degree+1, str("For open spline, knot vector with multiplicity must have length ",
len(control)+degree+1," but has length ", len(xknots)))
xknots
: type=="clamped" ? assert(len(xknots) == len(control)+1-degree, str("For clamped spline, knot vector with multiplicity must have length ",
len(control)+1-degree," but has length ", len(xknots)))
assert(xknots[0]!=xknots[1] && last(xknots)!=select(xknots,-2),
"For clamped splint, first and last knots cannot repeat (must have multiplicity one")
concat(repeat(xknots[0],degree), xknots, repeat(last(xknots),degree))
: /*type=="closed"*/ assert(len(xknots) == len(control)+1-degree, str("For closed spline, knot vector (including multiplicity) must have length ",
len(control)+1-degree," but has length ", len(xknots),control))
let(gmult=_calc_mult(xknots))
assert(gmult[0]+last(gmult)<=degree+1, "For closed spline, first and last knot multiplicity together cannot total more than the degree+1")
_extend_knot_vector(xknots,0,len(control)+degree+1),
bound = type=="clamped" ? undef
: [knot[degree], knot[len(control)]],
adjusted_u = !is_undef(splinesteps) ?
[for(i=[degree:1:len(control)-1])
each
if (knot[i]!=knot[i+1])
lerpn(knot[i],knot[i+1],splinesteps, endpoint=false),
if (type!="closed") knot[len(control)]
]
: is_undef(bound) ? u
: add_scalar((bound[1]-bound[0])*u,bound[0])
)
uniform?
let(
msum = cumsum(mult)
)
[for(uval=adjusted_u)
let(
mind = floor(uval*(len(mult)-1)),
knotidxR=msum[mind]-1,
knotidx = knotidxR<len(control) ? knotidxR : knotidxR - mult[mind]
)
_nurbs_pt(knot,select(control,knotidx-degree,knotidx),uval,1,degree,knotidx)
]
: let(
kmult = _calc_mult(knot),
knotidx =
[for(
kind = kmult[0]-1,
uind=0,
kmultind=1,
output=undef,
done=false
;
!done
;
output = (uind<len(adjusted_u) && approx(adjusted_u[uind],knot[kind]) && ((kmultind>=len(kmult)-1 || kind+kmult[kmultind]>=len(control)))) ? kind-kmult[kmultind-1]
: (uind<len(adjusted_u) && adjusted_u[uind]>=knot[kind] && adjusted_u[uind]>=knot[kind] && adjusted_u[uind]<knot[kind+kmult[kmultind]]) ? kind
: undef,
done = uind==len(adjusted_u),
uind = is_def(output) ? uind+1 : uind,
inc_k = uind<len(adjusted_u) && adjusted_u[uind]>=knot[kind+kmult[kmultind]],
kind = inc_k ? kind+kmult[kmultind] : kind,
kmultind = inc_k ? kmultind+1 : kmultind
)
if (is_def(output)) output]
)
[for(i=idx(adjusted_u))
_nurbs_pt(knot,select(control, knotidx[i]-degree,knotidx[i]), adjusted_u[i], 1, degree, knotidx[i])
];
function _nurbs_pt(knot, control, u, r, p, k) =
r>p ? control[0]
:
let(
ctrl_new = [for(i=[k-p+r:1:k])
let(
alpha = (u-knot[i]) / (knot[i+p-r+1]-knot[i])
)
(1-alpha) * control[i-1-(k-p)-r+1] + alpha*control[i-(k-p)-r+1]
]
)
_nurbs_pt(knot,ctrl_new,u,r+1,p,k);
function _extend_knot_mult(mult, next, len) =
let(total = sum(mult))
total == len ? mult
: total>len ? [ each select(mult,0,-2), last(mult)-(total-len) ]
: _extend_knot_mult([each mult,mult[next]], next+1, len);
function _extend_knot_vector(knots,next,len) =
len(knots)==len ? knots
: _extend_knot_vector([each knots, last(knots)+knots[next+1]-knots[next]], next+1, len);
function _calc_mult(knots) =
let(
ind=[ 0,
for(i=[1:len(knots)-1])
if (knots[i]!=knots[i-1]) i,
len(knots)
]
)
deltas(ind);
// Module: debug_nurbs()
// Synopsis: Shows a NURBS curve and its control points, knots and weights
// SynTags: Geom
// Topics: NURBS, Debugging
// See Also: nurbs_curve()
// Usage:
// debug_nurbs(control, degree, [width], [splinesteps=], [type=], [mult=], [knots=], [size=], [show_weights=], [show_knots=], [show_idx=]);
// Description:
// Displays a 2D or 3D NURBS and the associated control points to help debug NURBS curves. You can display the
// control point indices and weights, and can also display the knot points.
// Arguments:
// control = control points for NURBS
// degree = degree of NURBS
// splinesteps = number of segments between each pair of knots. Default: 16
// width = width of the line. Default: 1
// size = size of text annotations. Default: 3 times the width
// mult = multiplicity vector for NURBS
// weights = weight vector for NURBS
// type = NURBS type, one of "clamped", "open" or "closed". Default: "clamped"
// show_index = if true then display index of each control point vertex. Default: true
// show_weights = if true then display any non-unity weights. Default: true if weights vector is supplied, false otherwise
// show_knots = If true then show the knots on the spline curve. Default: false
// Example(2D,Med,NoAxes): The default display includes the control point polygon with its vertices numbered, and the NURBS curve
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4,type="closed");
// Example(2D,Med,NoAxes): If you want to see the knots set `show_knots=true`:
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4,type="clamped",show_knots=true);
// Example(2D,Med,NoAxes): Non-unity weights are displayed if you give a weight vector
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// weights = [1,1,1,7,1,1,7,1,1,1];
// debug_nurbs(pts,4,type="closed",weights=weights);
module debug_nurbs(control,degree,splinesteps=16,width=1, size, mult,weights,type="clamped",knots, show_weights, show_knots=false, show_index=true)
{
$fn=8;
size = default(size, 3*width);
show_weights = default(show_weights, is_def(weights));
N=len(control);
twodim = len(control[0])==2;
curve = nurbs_curve(control=control,degree=degree,splinesteps=splinesteps, mult=mult,weights=weights, type=type, knots=knots);
stroke(curve, width=width, closed=type=="closed");//, color="green");
stroke(control, width=width/2, color="lightblue", closed=type=="closed");
if (show_knots){
knotpts = nurbs_curve(control=control, degree=degree, splinesteps=1, mult=mult, weights=weights, type=type, knots=knots);
echo(knotpts);
color([1,.5,1])
move_copies(knotpts)
if (twodim)circle(r=width);
else sphere(r=width);
}
color("blue")
if (show_index)
move_copies(control){
let(label = str($idx),
anch = show_weights && is_def(weights[$idx]) && weights[$idx]!=1 ? FWD : CENTER)
if (twodim) text(text=label, size=size, anchor=anch);
else rot($vpr) text3d(text=label, size=size, anchor=anch);
}
color("blue")
if ( show_weights)
move_copies(control){
if(is_def(weights[$idx]) && weights[$idx]!=1)
let(label = str("w=",weights[$idx]),
anch = show_index ? BACK : CENTER
)
if (twodim) fwd(size/2*0)text(text=label, size=size, anchor=anch);
else rot($vpr) text3d(text=label, size=size, anchor=anch);
}
}
// Section: NURBS Surfaces
// Function: is_nurbs_patch()
// Synopsis: Returns true if the given item looks like a NURBS patch.
// Topics: NURBS Patches, Type Checking
// Usage:
// bool = is_nurbs_patch(x);
// Description:
// Returns true if the given item looks like a NURBS patch. (a 2D array of 3D points.)
// Arguments:
// x = The value to check the type of.
function is_nurbs_patch(x) =
is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0]) == len(x[len(x)-1]);
// Function: nurbs_patch_points()
// Synopsis: Computes specifies point(s) on a NURBS surface patch
// Topics: NURBS Patches
// See Also: nurbs_vnf(), nurbs_curve()
// Usage:
// pointgrid = nurbs_patch_points(patch, degree, [splinesteps], [u=], [v=], [weights=], [type=], [mult=], [knots=]);
// Description:
// Sample a NURBS patch on a point set. If you give splinesteps then it will sampled uniformly in the spline
// parameter between the knots, ensuring that a sample appears at every knot. If you instead give u and v then
// the values at those points in parameter space will be returned. The various NURBS parameters can all be
// single values, if the NURBS has the same parameters in both directions, or pairs listing the value for the
// two directions.
// Arguments:
// patch = rectangular list of control points in any dimension
// degree = a scalar or 2-vector giving the degree of the NURBS in the two directions
// splinesteps = a scalar or 2-vector giving the number of segments between each knot in the two directions
// ---
// u = evaluation points in the u direction of the patch
// v = evaluation points in the v direction of the patch
// mult = a single list or pair of lists giving the knot multiplicity in the two directions. Default: all 1
// knots = a single list of pair of lists giving the knot vector in each of the two directions. Default: uniform
// weights = a single list or pair of lists giving the weight at each control point in the patch. Default: all 1
// type = a single string or pair of strings giving the NURBS type, where each entry is one of "clamped", "open" or "closed". Default: "clamped"
// Example(3D,NoScale): Computing points on a patch using ranges
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// pts = nurbs_patch_points(patch, 3, u=[0:.1:1], v=[0:.3:1]);
// move_copies(flatten(pts)) sphere(r=2,$fn=16);
// Example(3D,NoScale): Computing points using splinesteps
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// pts = nurbs_patch_points(patch, 3, splinesteps=5);
// move_copies(flatten(pts)) sphere(r=2,$fn=16);
function nurbs_patch_points(patch, degree, splinesteps, u, v, weights, type=["clamped","clamped"], mult=[undef,undef], knots=[undef,undef]) =
assert(is_undef(splinesteps) || !any_defined([u,v]), "Cannot combine splinesteps with u and v")
is_def(weights) ?
assert(is_matrix(weights,len(patch),len(patch[0])), "The weights parameter must be a matrix that matches the size of the patch array")
let(
patch = [for(i=idx(patch)) [for (j=idx(patch[0])) [each patch[i][j]*weights[i][j], weights[i][j]]]],
pts = nurbs_patch_points(patch=patch, degree=degree, splinesteps=splinesteps, u=u, v=v, type=type, mult=mult, knots=knots)
)
[for(row=pts) [for (pt=row) select(pt,0,-2)/last(pt)]]
:
assert(is_undef(u) || is_range(u) || is_vector(u) || is_finite(u), "Input u is invalid")
assert(is_undef(v) || is_range(v) || is_vector(v) || is_finite(v), "Input v is invalid")
assert(num_defined([u,v])!=1, "Must define both u and v (when using)")
let(
u=is_range(u) ? list(u) : u,
v=is_range(v) ? list(v) : v,
degree = force_list(degree,2),
type = force_list(type,2),
splinesteps = is_undef(splinesteps) ? [undef,undef] : force_list(splinesteps,2),
mult = is_vector(mult) || is_undef(mult) ? [mult,mult]
: assert((is_undef(mult[0]) || is_vector(mult[0])) && (is_undef(mult[1]) || is_vector(mult[1])), "mult must be a vector or list of two vectors")
mult,
knots = is_vector(knots) || is_undef(knots) ? [knots,knots]
: assert((is_undef(knots[0]) || is_vector(knots[0])) && (is_undef(knots[1]) || is_vector(knots[1])), "knots must be a vector or list of two vectors")
knots
)
is_num(u) && is_num(v)? nurbs_curve([for (control=patch) nurbs_curve(control, degree[1], u=v, type=type[1], mult=mult[1], knots=knots[1])],
degree[0], u=u, type=type[0], mult=mult[0], knots=knots[0])
: is_num(u) ? nurbs_patch_points(patch, degree, u=[u], v=v, knots=knots, mult=mult, type=type)[0]
: is_num(v) ? column(nurbs_patch_points(patch, degree, u=u, v=[v], knots=knots, mult=mult, type=type),0)
:
let(
vsplines = [for (i = idx(patch[0])) nurbs_curve(column(patch,i), degree[0], splinesteps=splinesteps[0],u=u, type=type[0],mult=mult[0],knots=knots[0])]
)
[for (i = idx(vsplines[0])) nurbs_curve(column(vsplines,i), degree[1], splinesteps=splinesteps[1], u=v, mult=mult[1], knots=knots[1], type=type[1])];
// Function: nurbs_vnf()
// Synopsis: Generates a (possibly non-manifold) VNF for a single NURBS surface patch.
// SynTags: VNF
// Topics: NURBS Patches
// See Also: nurbs_patch_points()
// Usage:
// vnf = nurbs_vnf(patch, degree, [splinesteps], [mult=], [knots=], [weights=], [type=], [style=]);
// Description:
// Compute a (possibly non-manifold) VNF for a NURBS. The input patch must be an array of control points. If weights is given it
// must be an array of weights that matches the size of the control points. The style parameter
// gives the {{vnf_vertex_array()}} style to use. The other parameters may specify the NURBS parameters in the two directions
// by giving a single value, which applies to both directions, or a list of two values to specify different values in each direction.
// You can specify undef for for a direction to keep the default, such as `mult=[undef,v_multiplicity]`.
// Arguments:
// patch = rectangular list of control points in any dimension
// degree = a scalar or 2-vector giving the degree of the NURBS in the two directions
// splinesteps = a scalar or 2-vector giving the number of segments between each knot in the two directions
// ---
// mult = a single list or pair of lists giving the knot multiplicity in the two directions. Default: all 1
// knots = a single list of pair of lists giving the knot vector in each of the two directions. Default: uniform
// weights = a single list or pair of lists giving the weight at each control point in the. Default: all 1
// type = a single string or pair of strings giving the NURBS type, where each entry is one of "clamped", "open" or "closed". Default: "clamped"
// style = {{vnf_vertex_array ()}} style to use for triangulating the surface. Default: "default"
// Example(3D): Quadratic B-spline surface
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, 2);
// vnf_polyhedron(vnf);
// Example(3D): Cubic B-spline surface
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, 3);
// vnf_polyhedron(vnf);
// Example(3D): Cubic B-spline surface, closed in one direction
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, 3, type=["closed","clamped"]);
// vnf_polyhedron(vnf);
// Example(3D): B-spline surface cubic in one direction, quadratic in the other
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, [3,2],type=["closed","clamped"]);
// vnf_polyhedron(vnf);
// Example(3D): The sphere can be represented using NURBS
// patch = [
// [[0,0,1], [0,0,1], [0,0,1], [0,0,1], [0,0,1], [0,0,1], [0,0,1]],
// [[2,0,1], [2,4,1], [-2,4,1], [-2,0,1], [-2,-4,1], [2,-4,1], [2,0,1]],
// [[2,0,-1],[2,4,-1],[-2,4,-1],[-2,0,-1],[-2,-4,-1], [2,-4,-1],[2,0,-1]],
// [[0,0,-1],[0,0,-1],[0,0,-1], [0,0,-1], [0,0,-1], [0,0,-1], [0,0,-1]]
// ];
// weights = [
// [9,3,3,9,3,3,9],
// [3,1,1,3,1,1,3],
// [3,1,1,3,1,1,3],
// [9,3,3,9,3,3,9],
// ]/9;
// vknots = [0, 1/2, 1/2, 1/2, 1];
// vnf = nurbs_vnf(patch, 3,weights=weights, knots=[undef,vknots]);
// vnf_polyhedron(vnf);
function nurbs_vnf(patch, degree, splinesteps=16, weights, type="clamped", mult, knots, style="default") =
assert(is_nurbs_patch(patch),"Input patch is not a rectangular aray of points")
let(
pts = nurbs_patch_points(patch=patch, degree=degree, splinesteps=splinesteps, type=type, mult=mult, knots=knots, weights=weights)
)
vnf_vertex_array(pts, style=style, row_wrap=type[0]=="closed", col_wrap=type[1]=="closed");