forked from BelfrySCAD/BOSL2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
walls.scad
820 lines (754 loc) · 34.6 KB
/
walls.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
//////////////////////////////////////////////////////////////////////
// LibFile: walls.scad
// Walls and structural elements that 3D print without support.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/walls.scad>
// FileGroup: Parts
// FileSummary: Walls and structural elements that 3D print without support.
//////////////////////////////////////////////////////////////////////
include<rounding.scad>
// Section: Walls
// Module: sparse_wall()
// Synopsis: Makes an open cross-braced rectangular wall.
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
//
// Usage:
// sparse_wall(h, l, thick, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS];
//
// Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
// the need for support material in 3D printing.
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// ---
// maxang = maximum overhang angle of cross-braces, measured down from vertical. Default: 30
// strut = the width of the cross-braces. Default: 5
// max_bridge = maximum bridging distance between cross-braces. Default: 20
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// See Also: corrugated_wall(), thinning_wall()
//
// Example: Typical Shape
// sparse_wall(h=40, l=100, thick=3);
// Example: Thinner Strut
// sparse_wall(h=40, l=100, thick=3, strut=2);
// Example: Larger maxang
// sparse_wall(h=40, l=100, thick=3, strut=2, maxang=45);
// Example: Longer max_bridge
// sparse_wall(h=40, l=100, thick=3, strut=2, maxang=45, max_bridge=30);
module sparse_wall(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anchor=CENTER, spin=0, orient=UP)
{
zoff = h/2 - strut/2;
yoff = l/2 - strut/2;
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
maxz = 2 * maxhyp * cos(maxang);
zreps = ceil(2*zoff/maxz);
zstep = 2*zoff / zreps;
hyp = zstep/2 / cos(maxang);
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
yreps = ceil(2*yoff/maxy);
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
yrot(90) {
linear_extrude(height=thick, convexity=4*yreps, center=true) {
sparse_wall2d([h,l], maxang=maxang, strut=strut, max_bridge=max_bridge);
}
}
children();
}
}
// Module: sparse_wall2d()
// Synopsis: Makes an open cross-braced rectangular wall.
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
//
// Usage:
// sparse_wall2d(size, [maxang=], [strut=], [max_bridge=]) [ATTACHMENTS];
//
// Description:
// Makes a 2D open rectangular square with X-shaped cross-bracing, designed to be extruded, to make a strut that reduces
// the need for support material in 3D printing.
//
// Arguments:
// size = The `[X,Y]` size of the outer rectangle.
// ---
// maxang = maximum overhang angle of cross-braces.
// strut = the width of the cross-braces.
// max_bridge = maximum bridging distance between cross-braces.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
//
// See Also: corrugated_wall(), thinning_wall()
//
// Example: Typical Shape
// sparse_wall2d(size=[40,100]);
// Example: Thinner Strut
// sparse_wall2d(size=[40,100], strut=2);
// Example: Larger maxang
// sparse_wall2d(size=[40,100], strut=2, maxang=45);
// Example: Longer max_bridge
// sparse_wall2d(size=[40,100], strut=2, maxang=45, max_bridge=30);
module sparse_wall2d(size=[50,100], maxang=30, strut=5, max_bridge=20, anchor=CENTER, spin=0)
{
h = size.x;
l = size.y;
zoff = h/2 - strut/2;
yoff = l/2 - strut/2;
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
maxz = 2 * maxhyp * cos(maxang);
zreps = ceil(2*zoff/maxz);
zstep = 2*zoff / zreps;
hyp = zstep/2 / cos(maxang);
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
yreps = ceil(2*yoff/maxy);
ystep = 2*yoff / yreps;
ang = atan(ystep/zstep);
len = zstep / cos(ang);
attachable(anchor,spin, two_d=true, size=size) {
union() {
difference() {
square([h, l], center=true);
square([h-2*strut, l-2*strut], center=true);
}
ycopies(ystep, n=yreps) {
xcopies(zstep, n=zreps) {
skew(syx=tan(-ang)) square([(h-strut)/zreps, strut/cos(ang)], center=true);
skew(syx=tan( ang)) square([(h-strut)/zreps, strut/cos(ang)], center=true);
}
}
}
children();
}
}
// Module: sparse_cuboid()
// Synopsis: Makes an open cross-braced cuboid
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut(), cuboid()
// Usage:
// sparse_cuboid(size, [dir], [maxang=], [struct=]
// Description:
// Makes an open rectangular cuboid with X-shaped cross-bracing to reduce the need for material in 3d printing.
// The direction of the cross bracing can be aligned with the X, Y or Z axis. This module can be
// used as a drop-in replacement for {{cuboid()}} if you belatedly decide that your model would benefit from
// the sparse construction. Note that for Z aligned bracing the max_bridge parameter contrains the gaps that are parallel
// to the Y axis, and the angle is measured relative to the X direction.
// Arguments:
// size = The size of sparse wall, a number or length 3 vector.
// dir = direction of holes through the cuboid, must be a vector parallel to the X, Y or Z axes, or one of "X", "Y" or "Z". Default: "Y"
// ---
// maxang = maximum overhang angle of cross-braces, measured down from vertical. Default: 30
// strut = the width of the cross-braces. Default: 5
// max_bridge = maximum bridging distance between cross-braces. Default: 20
// chamfer = Size of chamfer, inset from sides. Default: No chamfering.
// rounding = Radius of the edge rounding. Default: No rounding.
// edges = Edges to mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: all edges.
// except = Edges to explicitly NOT mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: No edges.
// trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true`
// teardrop = If given as a number, rounding around the bottom edge of the cuboid won't exceed this many degrees from vertical. If true, the limit angle is 45 degrees. Default: `false`
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Examples:
// sparse_cuboid([10,20,30], strut=1);
// sparse_cuboid([10,20,30], "Y", strut=1);
// sparse_cuboid([10,20,30], UP, strut=1);
// sparse_cuboid(30, FWD, strut=2, rounding=2, $fn=24);
module sparse_cuboid(size, dir=RIGHT, strut=5, maxang=30, max_bridge=20,
chamfer,
rounding,
edges=EDGES_ALL,
except=[],
except_edges,
trimcorners=true,
teardrop=false,
anchor=CENTER, spin=0, orient=UP)
{
size = scalar_vec3(size);
dummy1=assert(in_list(dir,["X","Y","Z"]) || is_vector(dir,3), "dir must be a 3-vector or one of \"X\", \"Y\", or \"Z\"");
count = len([for(d=dir) if (d!=0) d]);
dummy2=assert(is_string(dir) || (count==1 && len(dir)<=3), "vector valued dir must have exactly one non-zero component");
dir = is_string(dir) ? dir
: dir.x ? "X"
: dir.y ? "Y"
: "Z";
attachable(anchor,spin,orient,size=size){
intersection(){
if (dir=="X")
sparse_wall(size.z,size.y,size.x,strut=strut,maxang=maxang, max_bridge=max_bridge);
else if (dir=="Y")
zrot(90)
sparse_wall(size.z,size.x,size.y,strut=strut,maxang=maxang, max_bridge=max_bridge);
else
yrot(90)
sparse_wall(size.x,size.y,size.z,strut=strut,maxang=maxang, max_bridge=max_bridge);
cuboid(size=size, chamfer=chamfer, rounding=rounding,edges=edges, except=except, except_edges=except_edges,
trimcorners=trimcorners, teardrop=teardrop);
}
children();
}
}
// Module: hex_panel()
// Synopsis: Create a hexagon braced panel of any shape
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), hex_panel(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
// Usage:
// hex_panel(shape, wall, spacing, [frame=], [bevel=], [bevel_frame=], [h=|height=|l=|length=], [anchor=], [orient=], [spin=])
// Description:
// Produces a panel with a honeycomb interior that can be rectangular with optional beveling, or
// an arbitrary polygon shape without beveling. The panel consists of a frame containing
// a honeycob interior. The frame is laid out in the XY plane with the honeycob interior
// and then extruded to the height h. The shape argument defines the outer bounderies of
// the frame.
// .
// The simplest way to define the frame shape is to give a cuboid size as a 3d vector for
// the shape argument. The h argument is not allowed in this case. With rectangular frames you can supply the
// bevel argument which applies a 45 deg bevel on the specified list of edges. These edges
// can be LEFT, RIGHT, FRONT, or BACK to place a bevel the edge facing upward. You can add
// BOTTOM, as in LEFT+BOT, to get a bevel that faces down. When beveling a separate beveled frame
// is added to the model. You can independently control its thickness by setting `bevel_frame`, which
// defaults to the frame thickness. Note also that `frame` and `bevel_frame` can be set to zero
// to produce just the honeycomb.
// .
// The other option is to provide a 2D path as the shape argument. The path must not intersect
// itself. You must give the height argument in this case and you cannot give the bevel argument.
// The panel is made from a linear extrusion of the specified shape. In this case, anchoring
// is done as usual for linear sweeps. The shape appears by default on its base and you can
// choose "hull" or "intersect" anchor types.
// Arguments:
// shape = 3D size vector or a 2D path
// strut = thickness of hexagonal bracing
// spacing = center-to-center spacing of hex cells in the honeycomb.
// ---
// frame = width of the frame around the honeycomb. Default: same as strut
// bevel = list of edges to bevel on rectangular case when shape is a size vector; allowed options are RIGHT, LEFT, BACK, or FRONT, or those directions with BOTTOM added. Default: []
// bevel_frame = width of the frame applied at bevels. Default: same as frame
// h / height / l / length = thickness of the panel when shape is a path
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` for rectangular panels, `"zcenter"` for extrusions.
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// atype = Select "hull", "intersect" anchor types. Default: "hull"
// cp = Centerpoint for determining "intersect" anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid"
// Named Anchors:
// "base" = Anchor to the base of the shape in its native position
// "top" = Anchor to the top of the shape in its native position
// "zcenter" = Center shape in the Z direction in the native XY position (default)
// Anchor Types:
// hull = Anchors to the convex hull of the linear sweep of the path, ignoring any end roundings.
// intersect = Anchors to the surface of the linear sweep of the path, ignoring any end roundings.
// Examples:
// hex_panel([50, 100, 5], strut=1.5, spacing=10);
// hex_panel([50, 100, 5], 1.5, 10, frame = 5);
// hex_panel([50, 100, 5], 5, 10.05);
// hex_panel([50, 100, 5], 1.5, 20, frame = 5);
// hex_panel([50, 100, 5], 1.5, 12, frame = 0);
// hex_panel([50, 100, 5], frame = 10, spacing = 20, strut = 4);
// hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel = [LEFT, RIGHT]);
// hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel = [FWD, BACK]);
// hex_panel([50, 100, 10], 1.5, 10, frame = 3, bevel = [LEFT, RIGHT, FWD, BACK]);
// hex_panel([50, 100, 10], 1.5, 10, frame = 1, bevel = [LEFT, RIGHT, FWD+BOTTOM, BACK+BOTTOM]);
// hex_panel([50, 100, 10], 1.5, 10, frame=2, bevel_frame=0, bevel = [FWD, BACK+BOT, RIGHT, LEFT]);
// Example: Triangle
// s = [[0, -40], [0, 40], [60, 0]];
// hex_panel(s, strut=1.5, spacing=10, h = 10, frame = 5);
// Example: Concave polygon
// s = [[0, -40], [0, 70], [60, 0], [80, 20], [70, -20]];
// hex_panel(s, 1.5, 10, h = 10, frame = 5);
// Example: Another concave example
// s = [[0, -40], [0, 40], [30, 20], [60, 40], [60, -40], [30, -20]];
// hex_panel(s, 1.5, 10, h = 10, frame = 5);
// Example: Circular panel
// hex_panel(circle(30), 1.5, 10, h = 10, frame = 5);
// Example: More complicated shape
// s = glued_circles(d=50, spread=50, tangent=30);
// hex_panel(s, 1.5, 10, h = 10, frame = 5);
// Example: Care is required when arranging panels vertically for 3d printability. Setting `orient=RIGHT` produces the correct result.
// hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel = [FWD, BACK], anchor = BACK + RIGHT + BOTTOM, orient = RIGHT);
// zrot(-90)hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel = [FWD, BACK], anchor = FWD + RIGHT + BOTTOM, orient = RIGHT);
// Example: In this example panels one of the panels is positioned with `orient=FWD` which produces hexagons with 60 deg overhang edges that may not be 3d printable. This example alsu uses `bevel_frame` to thin the material at the corner.
// hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel_frame=1, bevel = [FWD, BACK], anchor = BACK + RIGHT + BOTTOM, orient = RIGHT);
// hex_panel([100, 50, 10], 1.5, 10, frame = 5, bevel_frame=1, bevel = [LEFT, RIGHT], anchor = FWD + LEFT + BOTTOM, orient = FWD);
// Example: Joining panels with {{attach()}}. In this case panels were joined front beveled edge to back beveled edge, which means the hex structure doesn't align at the joint
// hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel_frame=0, bevel = [FWD, BACK], anchor = BACK + RIGHT + BOTTOM, orient = RIGHT)
// attach(BACK,FRONT)
// hex_panel([50, 100, 10], 1.5, 10, frame = 5, bevel_frame=0, bevel = [FWD, BACK]);
// Example: Joining panels with {{attach()}}. Attaching BACK to BACK aligns the hex structure which looks better.
// hex_panel([50, 100, 10], 1.5, 10, frame = 1, bevel = [FWD, BACK], anchor = BACK + RIGHT + BOTTOM, orient = RIGHT)
// attach(BACK,BACK)
// hex_panel([50, 100, 10], 1.5, 10, frame = 1, bevel = [FWD, BACK]);
module hex_panel(
shape,
strut,
spacing,
frame,
bevel_frame,
h, height, l, length,
bevel = [],
anchor,
orient = UP, cp="centroid", atype="hull",
spin = 0)
{
frame = first_defined([frame,strut]);
bevel_frame = first_defined([bevel_frame, frame]);
shape = force_path(shape,"shape");
bevel = is_vector(bevel) ? [bevel] : bevel;
bevOK = len([for(bev=bevel) if (norm([bev.x,bev.y])==1 && (bev.x==0 || bev.y==0) && (bev.z==0 || bev.z==-1)) 1]) == len(bevel);
dummy=
assert(is_finite(strut) && strut > 0, "strut must be positive")
assert(is_finite(frame) && frame >= 0, "frame must be nonnegative")
assert(is_finite(bevel_frame) && bevel_frame >= 0, "bevel_frame must be nonnegative")
assert(is_finite(spacing) && spacing>0, "spacing must be positive")
assert(is_path(shape,2) || is_vector(shape, 3), "shape must be a path or a 3D vector")
assert(len(bevel) == 0 || is_vector(shape, 3), "bevel must be used only on rectangular panels")
assert(is_path(shape) || all_positive(shape), "when shape is a size vector all components must be positive")
assert(bevOK, "bevel list contains an invalid entry")
assert(!(in_list(FRONT, bevel) && in_list(FRONT+BOTTOM, bevel)), "conflicting FRONT bevels")
assert(!(in_list(BACK, bevel) && in_list(BACK+BOTTOM, bevel)), "conflicting BACK bevels")
assert(!(in_list(RIGHT, bevel) && in_list(RIGHT+BOTTOM, bevel)), "conflicting RIGHT bevels")
assert(!(in_list(LEFT, bevel) && in_list(LEFT+BOTTOM, bevel)), "conflicting LEFT bevels")
assert(is_undef(h) || is_path(shape), "cannot give h with a size vector");
shp = is_path(shape) ? shape : square([shape.x, shape.y], center = true);
ht = is_path(shape) ? one_defined([h,l,height,length],"height,length,l,h")
: shape.z;
bounds = pointlist_bounds(shp);
sizes = bounds[1] - bounds[0]; // [xsize, ysize]
assert(frame*2 + spacing < sizes[0], "There must be room for at least 1 cell in the honeycomb");
assert(frame*2 + spacing < sizes[1], "There must be room for at least 1 cell in the honeycomb");
bevpaths = len(bevel)==0 ? []
: _bevelSolid(shape,bevel);
if (len(bevel) > 0) {
size1 = [bevpaths[0][0].x-bevpaths[0][1].x, bevpaths[0][2].y-bevpaths[0][1].y,ht];
size2 = [bevpaths[1][0].x-bevpaths[1][1].x, bevpaths[1][2].y-bevpaths[1][1].y];
shift = point2d(centroid(bevpaths[1])-centroid(bevpaths[0]));
offset = (centroid(bevpaths[0]));
attachable(anchor,spin,orient,size=size1,size2=size2,shift=shift,offset=offset){
down(ht/2)
intersection() {
union() {
linear_extrude(height = ht, convexity=8) {
_honeycomb(shp, spacing = spacing, hex_wall = strut);
offset_stroke(shp, width=[-frame, 0], closed=true);
}
for (b = bevel) _bevelWall(shape, b, bevel_frame);
}
vnf_polyhedron(vnf_vertex_array(bevpaths, col_wrap=true, caps=true));
}
children();
}
}
else if (is_vector(shape)){
attachable(anchor = anchor, spin = spin, orient = orient, size = shape) {
down(ht/2)
linear_extrude(height = ht, convexity=8) {
_honeycomb(shp, spacing = spacing, hex_wall = strut);
offset_stroke(shp, width=[-frame, 0], closed=true);
}
children();
}
}
else {
anchors = [
named_anchor("zcenter", [0,0,0], UP),
named_anchor("base", [0,0,-ht/2], UP),
named_anchor("top", [0,0,ht/2], UP)
];
attachable(anchor = default(anchor,"zcenter"), spin = spin, orient = orient, path=shp, h=ht, cp=cp, extent=atype=="hull",anchors=anchors) {
down(ht/2)
linear_extrude(height = ht, convexity=8) {
_honeycomb(shp, spacing = spacing, hex_wall = strut);
offset_stroke(shp, width=[-frame, 0], closed=true);
}
children();
}
}
}
module _honeycomb(shape, spacing=10, hex_wall=1)
{
hex = hexagon(id=spacing-hex_wall, spin=180/6);
bounds = pointlist_bounds(shape);
size = bounds[1] - bounds[0];
hex_rgn2 = grid_copies(spacing=spacing, size=size, stagger=true, p=hex);
center = (bounds[0] + bounds[1]) / 2;
hex_rgn = move(center, p=hex_rgn2);
difference(){
polygon(shape);
region(hex_rgn);
}
}
function _bevelSolid(shape, bevel) =
let(
tX = in_list(RIGHT, bevel) ? -shape.z : 0,
tx = in_list(LEFT, bevel) ? shape.z : 0,
tY = in_list(BACK, bevel) ? -shape.z : 0,
ty = in_list(FRONT, bevel) ? shape.z : 0,
bX = in_list(RIGHT + BOTTOM, bevel) ? -shape.z : 0,
bx = in_list(LEFT + BOTTOM, bevel) ? shape.z : 0,
bY = in_list(BACK + BOTTOM, bevel) ? -shape.z : 0,
by = in_list(FRONT + BOTTOM, bevel) ? shape.z : 0,
pathB = path3d(rect(select(shape,0,1)) + [[bX,by],[bx,by],[bx,bY],[bX,bY]]),
pathT = path3d(rect(select(shape,0,1)) + [[tX,ty],[tx,ty],[tx,tY],[tX,tY]],shape.z)
)
[pathB,pathT];
module _bevelWall(shape, bevel, thickness) {
l = bevel.y != 0 ? shape.x : shape.y;
d = bevel.y != 0 ? shape.y : shape.x;
zr = bevel.y == -1 ? 180
: bevel.y == 1 ? 0
: bevel.x == -1 ? 90
: bevel.x == 1 ? 270
: undef;
xr = bevel.x != 0 && bevel.z < 0 ? 180 : 0;
yr = bevel.y != 0 && bevel.z < 0 ? 180 : 0;
path = [[-thickness, 0], [0, 0], [-shape.z, -shape.z], [-shape.z-thickness, -shape.z]];
up(shape.z/2)
xrot(xr) yrot(yr) zrot(zr) down(shape.z/2)
back(d/2) right(l/2)
zrot(90) xrot(-90)
linear_extrude(l) polygon(path);
}
// Module: corrugated_wall()
// Synopsis: Makes a corrugated rectangular wall.
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
//
// Usage:
// corrugated_wall(h, l, thick, [strut=], [wall=]) [ATTACHMENTS];
//
// Description:
// Makes a corrugated wall which relieves contraction stress while still
// providing support strength. Designed with 3D printing in mind.
//
// Arguments:
// h = height of strut wall.
// l = length of strut wall.
// thick = thickness of strut wall.
// ---
// strut = the width of the frame.
// wall = thickness of corrugations.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// See Also: sparse_wall(), thinning_wall()
//
// Example: Typical Shape
// corrugated_wall(h=50, l=100);
// Example: Wider Strut
// corrugated_wall(h=50, l=100, strut=8);
// Example: Thicker Wall
// corrugated_wall(h=50, l=100, strut=8, wall=3);
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2, anchor=CENTER, spin=0, orient=UP)
{
amplitude = (thick - wall) / 2;
period = min(15, thick * 2);
steps = quantup(segs(thick/2),4);
step = period/steps;
il = l - 2*strut + 2*step;
size = [thick, l, h];
attachable(anchor,spin,orient, size=size) {
union() {
linear_extrude(height=h-2*strut+0.1, slices=2, convexity=ceil(2*il/period), center=true) {
polygon(
points=concat(
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
)
);
}
difference() {
cube([thick, l, h], center=true);
cube([thick+0.5, l-2*strut, h-2*strut], center=true);
}
}
children();
}
}
// Module: thinning_wall()
// Synopsis: Makes a rectangular wall with a thin middle.
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
//
// Usage:
// thinning_wall(h, l, thick, [ang=], [braces=], [strut=], [wall=]) [ATTACHMENTS];
//
// Description:
// Makes a rectangular wall which thins to a smaller width in the center,
// with angled supports to prevent critical overhangs.
//
// Arguments:
// h = Height of wall.
// l = Length of wall. If given as a vector of two numbers, specifies bottom and top lengths, respectively.
// thick = Thickness of wall.
// ---
// ang = Maximum overhang angle of diagonal brace.
// braces = If true, adds diagonal crossbraces for strength.
// strut = The width of the borders and diagonal braces. Default: `thick/2`
// wall = The thickness of the thinned portion of the wall. Default: `thick/2`
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// See Also: sparse_wall(), corrugated_wall(), thinning_triangle()
//
// Example: Typical Shape
// thinning_wall(h=50, l=80, thick=4);
// Example: Trapezoidal
// thinning_wall(h=50, l=[80,50], thick=4);
// Example: Trapezoidal with Braces
// thinning_wall(h=50, l=[80,50], thick=4, strut=4, wall=2, braces=true);
module thinning_wall(h=50, l=100, thick=5, ang=30, braces=false, strut, wall, anchor=CENTER, spin=0, orient=UP)
{
l1 = (l[0] == undef)? l : l[0];
l2 = (l[1] == undef)? l : l[1];
strut = is_num(strut)? strut : min(h,l1,l2,thick)/2;
wall = is_num(wall)? wall : thick/2;
bevel_h = strut + (thick-wall)/2/tan(ang);
cp1 = circle_2tangents(strut, [0,0,+h/2], [l2/2,0,+h/2], [l1/2,0,-h/2])[0];
cp2 = circle_2tangents(bevel_h, [0,0,+h/2], [l2/2,0,+h/2], [l1/2,0,-h/2])[0];
cp3 = circle_2tangents(bevel_h, [0,0,-h/2], [l1/2,0,-h/2], [l2/2,0,+h/2])[0];
cp4 = circle_2tangents(strut, [0,0,-h/2], [l1/2,0,-h/2], [l2/2,0,+h/2])[0];
z1 = h/2;
z2 = cp1.z;
z3 = cp2.z;
x1 = l2/2;
x2 = cp1.x;
x3 = cp2.x;
x4 = l1/2;
x5 = cp4.x;
x6 = cp3.x;
y1 = thick/2;
y2 = wall/2;
corner1 = [ x2, 0, z2];
corner2 = [-x5, 0, -z2];
brace_len = norm(corner1-corner2);
size = [l1, thick, h];
attachable(anchor,spin,orient, size=size, size2=[l2,thick]) {
zrot(90) {
polyhedron(
points=[
[-x4, -y1, -z1],
[ x4, -y1, -z1],
[ x1, -y1, z1],
[-x1, -y1, z1],
[-x5, -y1, -z2],
[ x5, -y1, -z2],
[ x2, -y1, z2],
[-x2, -y1, z2],
[-x6, -y2, -z3],
[ x6, -y2, -z3],
[ x3, -y2, z3],
[-x3, -y2, z3],
[-x4, y1, -z1],
[ x4, y1, -z1],
[ x1, y1, z1],
[-x1, y1, z1],
[-x5, y1, -z2],
[ x5, y1, -z2],
[ x2, y1, z2],
[-x2, y1, z2],
[-x6, y2, -z3],
[ x6, y2, -z3],
[ x3, y2, z3],
[-x3, y2, z3],
],
faces=[
[ 4, 5, 1],
[ 5, 6, 2],
[ 6, 7, 3],
[ 7, 4, 0],
[ 4, 1, 0],
[ 5, 2, 1],
[ 6, 3, 2],
[ 7, 0, 3],
[ 8, 9, 5],
[ 9, 10, 6],
[10, 11, 7],
[11, 8, 4],
[ 8, 5, 4],
[ 9, 6, 5],
[10, 7, 6],
[11, 4, 7],
[11, 10, 9],
[20, 21, 22],
[11, 9, 8],
[20, 22, 23],
[16, 17, 21],
[17, 18, 22],
[18, 19, 23],
[19, 16, 20],
[16, 21, 20],
[17, 22, 21],
[18, 23, 22],
[19, 20, 23],
[12, 13, 17],
[13, 14, 18],
[14, 15, 19],
[15, 12, 16],
[12, 17, 16],
[13, 18, 17],
[14, 19, 18],
[15, 16, 19],
[ 0, 1, 13],
[ 1, 2, 14],
[ 2, 3, 15],
[ 3, 0, 12],
[ 0, 13, 12],
[ 1, 14, 13],
[ 2, 15, 14],
[ 3, 12, 15],
],
convexity=6
);
if(braces) {
bracepath = [
[-strut*0.33,thick/2],
[ strut*0.33,thick/2],
[ strut*0.33+(thick-wall)/2/tan(ang), wall/2],
[ strut*0.33+(thick-wall)/2/tan(ang),-wall/2],
[ strut*0.33,-thick/2],
[-strut*0.33,-thick/2],
[-strut*0.33-(thick-wall)/2/tan(ang),-wall/2],
[-strut*0.33-(thick-wall)/2/tan(ang), wall/2]
];
xflip_copy() {
intersection() {
extrude_from_to(corner1,corner2) {
polygon(bracepath);
}
prismoid([l1,thick],[l2,thick],h=h,anchor=CENTER);
}
}
}
}
children();
}
}
// Module: thinning_triangle()
// Synopsis: Makes a triangular wall with a thin middle.
// SynTags: Geom
// Topics: FDM Optimized, Walls
// See Also: sparse_wall(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
//
// Usage:
// thinning_triangle(h, l, thick, [ang=], [strut=], [wall=], [diagonly=], [center=]) [ATTACHMENTS];
//
// Description:
// Makes a triangular wall with thick edges, which thins to a smaller width in
// the center, with angled supports to prevent critical overhangs.
//
// Arguments:
// h = height of wall.
// l = length of wall.
// thick = thickness of wall.
// ---
// ang = maximum overhang angle of diagonal brace.
// strut = the width of the diagonal brace.
// wall = the thickness of the thinned portion of the wall.
// diagonly = boolean, which denotes only the diagonal side (hypotenuse) should be thick.
// center = If true, centers shape. If false, overrides `anchor` with `UP+BACK`.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// See Also: thinning_wall()
//
// Example: Centered
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=true);
// Example: All Braces
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=false);
// Example: Diagonal Brace Only
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, diagonly=true, center=false);
module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly=false, center, anchor, spin=0, orient=UP)
{
dang = atan(h/l);
dlen = h/sin(dang);
size = [thick, l, h];
anchor = get_anchor(anchor, center, BOT+FRONT, CENTER);
attachable(anchor,spin,orient, size=size) {
difference() {
union() {
if (!diagonly) {
translate([0, 0, -h/2])
narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
translate([0, -l/2, 0])
xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
}
intersection() {
cube(size=[thick, l, h], center=true);
xrot(-dang) yrot(180) {
narrowing_strut(w=thick, l=dlen*1.2, wall=strut, ang=ang);
}
}
cube(size=[wall, l-0.1, h-0.1], center=true);
}
xrot(-dang) {
translate([0, 0, h/2]) {
cube(size=[thick+0.1, l*2, h], center=true);
}
}
}
children();
}
}
// Module: narrowing_strut()
// Synopsis: Makes a strut like an extruded baseball home plate.
// SynTags: Geom
// Topics: FDM Optimized
// See Also: sparse_wall(), corrugated_wall(), thinning_wall(), thinning_triangle(), narrowing_strut()
//
// Usage:
// narrowing_strut(w, l, wall, [ang=]) [ATTACHMENTS];
//
// Description:
// Makes a rectangular strut with the top side narrowing in a triangle.
// The shape created may be likened to an extruded home plate from baseball.
// This is useful for constructing parts that minimize the need to support
// overhangs.
//
// Arguments:
// w = Width (thickness) of the strut.
// l = Length of the strut.
// wall = height of rectangular portion of the strut.
// ---
// ang = angle that the trianglar side will converge at.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
//
// Example:
// narrowing_strut(w=10, l=100, wall=5, ang=30);
module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orient=UP)
{
h = wall + w/2/tan(ang);
size = [w, l, h];
attachable(anchor,spin,orient, size=size) {
xrot(90)
fwd(h/2) {
linear_extrude(height=l, center=true, slices=2) {
back(wall/2) square([w, wall], center=true);
back(wall-0.001) {
yscale(1/tan(ang)) {
difference() {
zrot(45) square(w/sqrt(2), center=true);
fwd(w/2) square(w, center=true);
}
}
}
}
}
children();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap