-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path3population.jl
346 lines (303 loc) · 10.8 KB
/
3population.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
### Extract data from INEGI population census 2020
### and CONAPO population projections
println("*** Processing INEGI 2020 census data...")
using CSV, DataFrames
## Read data and create dataframe
begin
d = DataFrame(CSV.File("conjunto_de_datos_iter_00CSV20.csv"))
grupo = names(d)[10:110]
e = ["e00", "e06", "e11", "e20", "e30", "e40", "e50", "e60", "e70", "todos"]
tabs = DataFrame(edad = e, masc = zeros(Int, 10), fem = zeros(Int, 10), ambos = zeros(Int, 10))
tprc = DataFrame(edad = e, masc = zeros(10), fem = zeros(10), ambos = zeros(10))
f(x) = parse(Int, x)
end;
begin
# 0-5 years old
tabs.ambos[1] = f(d.P_0A2[1]) + f(d.P_3A5[1])
tabs.masc[1] = f(d.P_0A2_M[1]) + f(d.P_3A5_M[1])
tabs.fem[1] = f(d.P_0A2_F[1]) + f(d.P_3A5_F[1])
tabs.masc[1] + tabs.fem[1]
# 20-29
tabs.ambos[4] = f(d.P_20A24[1]) + f(d.P_25A29[1])
tabs.masc[4] = f(d.P_20A24_M[1]) + f(d.P_25A29_M[1])
tabs.fem[4] = f(d.P_20A24_F[1]) + f(d.P_25A29_F[1])
tabs.masc[4] + tabs.fem[4]
# 30-39
tabs.ambos[5] = f(d.P_30A34[1]) + f(d.P_35A39[1])
tabs.masc[5] = f(d.P_30A34_M[1]) + f(d.P_35A39_M[1])
tabs.fem[5] = f(d.P_30A34_F[1]) + f(d.P_35A39_F[1])
tabs.masc[5] + tabs.fem[5]
# 40-49
tabs.ambos[6] = f(d.P_40A44[1]) + f(d.P_45A49[1])
tabs.masc[6] = f(d.P_40A44_M[1]) + f(d.P_45A49_M[1])
tabs.fem[6] = f(d.P_40A44_F[1]) + f(d.P_45A49_F[1])
tabs.masc[6] + tabs.fem[6]
# 50-59
tabs.ambos[7] = f(d.P_50A54[1]) + f(d.P_55A59[1])
tabs.masc[7] = f(d.P_50A54_M[1]) + f(d.P_55A59_M[1])
tabs.fem[7] = f(d.P_50A54_F[1]) + f(d.P_55A59_F[1])
tabs.masc[7] + tabs.fem[7]
# 60-69
tabs.ambos[8] = f(d.P_60A64[1]) + f(d.P_65A69[1])
tabs.masc[8] = f(d.P_60A64_M[1]) + f(d.P_65A69_M[1])
tabs.fem[8] = f(d.P_60A64_F[1]) + f(d.P_65A69_F[1])
tabs.masc[8] + tabs.fem[8]
# 70+
tabs.ambos[9] = f(d.P_70A74[1]) + f(d.P_75A79[1]) + f(d.P_80A84[1]) + f(d.P_85YMAS[1])
tabs.masc[9] = f(d.P_70A74_M[1]) + f(d.P_75A79_M[1]) + f(d.P_80A84_M[1]) + f(d.P_85YMAS_M[1])
tabs.fem[9] = f(d.P_70A74_F[1]) + f(d.P_75A79_F[1]) + f(d.P_80A84_F[1]) + f(d.P_85YMAS_F[1])
tabs.masc[9] + tabs.fem[9]
# all ages
tabs.ambos[10] = d.POBTOT[1]
tabs.masc[10] = f(d.POBMAS[1])
tabs.fem[10] = f(d.POBFEM[1])
tabs.masc[10] + tabs.fem[10]
end;
begin
## 6-10
P_0A5 = tabs.ambos[1]
P_5 = P_0A5 - f(d.P_0A4[1])
P_6A9 = f(d.P_5A9[1]) - P_5
P_6A10 = (P_6A9, f(d.P_6A11[1]))
P_0A5_M = tabs.masc[1]
P_5_M = P_0A5_M - f(d.P_0A4_M[1])
P_6A9_M = f(d.P_5A9_M[1]) - P_5_M
P_6A10_M = (P_6A9_M, f(d.P_6A11_M[1]))
m2inf, m2sup = P_6A10_M
P_0A5_F = tabs.fem[1]
P_5_F = P_0A5_F - f(d.P_0A4_F[1])
P_6A9_F = f(d.P_5A9_F[1]) - P_5_F
P_6A10_F = (P_6A9_F, f(d.P_6A11_F[1]))
f2inf, f2sup = P_6A10_F
end;
begin
## 11-19
P_10A11 = f(d.P_6A11[1]) - P_6A9
P_10A19 = f(d.P_10A14[1]) + f(d.P_15A19[1])
P_12A19 = P_10A19 - P_10A11
P_11A19 = (P_12A19, P_10A19)
P_10A11_M = f(d.P_6A11_M[1]) - P_6A9_M
P_10A19_M = f(d.P_10A14_M[1]) + f(d.P_15A19_M[1])
P_12A19_M = P_10A19_M - P_10A11_M
P_11A19_M = (P_12A19_M, P_10A19_M)
m3inf, m3sup = P_11A19_M
P_10A11_F = f(d.P_6A11_F[1]) - P_6A9_F
P_10A19_F = f(d.P_10A14_F[1]) + f(d.P_15A19_F[1])
P_12A19_F = P_10A19_F - P_10A11_F
P_11A19_F = (P_12A19_F, P_10A19_F)
f3inf, f3sup = P_11A19_F
end
begin
## Estimation 6-10 and 11-19
T = [P_6A10_M P_6A10_F; P_11A19_M P_11A19_F];
println("INEGI 2020 population census")
tabs
println("Intervals for {e06, e11} × {masc, fem}")
T
# CONAPO factors:
e06e11masc = tabs.masc[10] - sum(tabs.masc[1:9])
e11masc = Int(round(0.644578 * e06e11masc))
e06masc = e06e11masc - e11masc
e06e11fem = tabs.fem[10] - sum(tabs.fem[1:9])
e11fem = Int(round(0.647301 * e06e11fem))
e06fem = e06e11fem - e11fem
tabs.masc[2] = e06masc
tabs.masc[3] = e11masc
tabs.fem[2] = e06fem
tabs.fem[3] = e11fem
tabs
sum(tabs.masc[1:9]) == tabs.masc[10]
sum(tabs.fem[1:9]) == tabs.fem[10]
tabs.ambos[2] = tabs.masc[2] + tabs.fem[2]
tabs.ambos[3] = tabs.masc[3] + tabs.fem[3]
sum(tabs.ambos[1:9]) == tabs.ambos[10]
end
CSV.write("censo2020.csv", tabs)
println("created file: censo2020.csv")
println("*** Processing CONAPO projections data...")
begin
dini = DataFrame(CSV.File("0_Pob_Inicio_1950_2070.csv"))
dmit = DataFrame(CSV.File("0_Pob_Mitad_1950_2070.csv"))
end
begin
e = ["e00", "e06", "e11", "e20", "e30", "e40", "e50", "e60", "e70", "todos"];
ee = Int[]
append!(ee, fill(1, 6)) # edades 0-5
append!(ee, fill(2, 5)) # edades 6-10
append!(ee, fill(3, 9)) # edades 11-19
for k ∈ 4:8 # edades 10(k-2) a 10(k-2)+9
append!(ee, fill(k, 10))
end
append!(ee, fill(9, length(70:150))) # edades 70 a 150
d = Dict(collect(0:150) .=> ee)
end;
begin
p2020abs = DataFrame(edad = e, hom = zeros(Int, 10), muj = zeros(Int, 10), ambos = zeros(Int, 10))
p2020abs1 = DataFrame(edad = e, hom = zeros(Int, 10), muj = zeros(Int, 10), ambos = zeros(Int, 10))
p2020abs2 = DataFrame(edad = e, hom = zeros(Int, 10), muj = zeros(Int, 10), ambos = zeros(Int, 10))
p2020prc = DataFrame(edad = e, hom = zeros(10), muj = zeros(10), ambos = zeros(10))
p2020prc1 = DataFrame(edad = e, hom = zeros(10), muj = zeros(10), ambos = zeros(10))
p2020prc2 = DataFrame(edad = e, hom = zeros(10), muj = zeros(10), ambos = zeros(10))
p2021abs = DataFrame(edad = e, hom = zeros(Int, 10), muj = zeros(Int, 10), ambos = zeros(Int, 10))
p2021prc = DataFrame(edad = e, hom = zeros(10), muj = zeros(10), ambos = zeros(10))
p2022abs = DataFrame(edad = e, hom = zeros(Int, 10), muj = zeros(Int, 10), ambos = zeros(Int, 10))
p2022prc = DataFrame(edad = e, hom = zeros(10), muj = zeros(10), ambos = zeros(10))
p2023abs = DataFrame(edad = e, hom = zeros(Int, 10), muj = zeros(Int, 10), ambos = zeros(Int, 10))
p2023prc = DataFrame(edad = e, hom = zeros(10), muj = zeros(10), ambos = zeros(10))
end;
begin
i2020hom = findall(dini.AÑO .== 2020) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Hombres")
i2020muj = findall(dini.AÑO .== 2020) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Mujeres")
i2020hom2 = findall(dmit.AÑO .== 2020) ∩ findall(dmit.CVE_GEO .== 0) ∩ findall(dmit.SEXO .== "Hombres")
i2020muj2 = findall(dmit.AÑO .== 2020) ∩ findall(dmit.CVE_GEO .== 0) ∩ findall(dmit.SEXO .== "Mujeres")
i2021hom = findall(dini.AÑO .== 2021) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Hombres")
i2021muj = findall(dini.AÑO .== 2021) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Mujeres")
i2022hom = findall(dini.AÑO .== 2022) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Hombres")
i2022muj = findall(dini.AÑO .== 2022) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Mujeres")
i2023hom = findall(dini.AÑO .== 2023) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Hombres")
i2023muj = findall(dini.AÑO .== 2023) ∩ findall(dini.CVE_GEO .== 0) ∩ findall(dini.SEXO .== "Mujeres")
end;
## 2020
begin # beginning of the year
dh = dini[i2020hom, :]
for i ∈ 1:nrow(dh)
p2020abs[d[dh.EDAD[i]], 2] += dh.POBLACION[i]
end
dm = dini[i2020muj, :]
for i ∈ 1:nrow(dm)
p2020abs[d[dm.EDAD[i]], 3] += dm.POBLACION[i]
end
p2020abs[10, 2] = sum(p2020abs.hom[1:9])
p2020abs[10, 3] = sum(p2020abs.muj[1:9])
for i ∈ 1:10
p2020abs[i, 4] = p2020abs[i, 2] + p2020abs[i, 3]
end
for i ∈ 1:10
for j ∈ 2:4
p2020prc[i, j] = p2020abs[i, j] / p2020abs[10, 4]
end
end
end
begin # middle of the year
dh = dmit[i2020hom2, :]
for i ∈ 1:nrow(dh)
p2020abs2[d[dh.EDAD[i]], 2] += dh.POBLACION[i]
end
dm = dmit[i2020muj2, :]
for i ∈ 1:nrow(dm)
p2020abs2[d[dm.EDAD[i]], 3] += dm.POBLACION[i]
end
p2020abs2[10, 2] = sum(p2020abs2.hom[1:9])
p2020abs2[10, 3] = sum(p2020abs2.muj[1:9])
for i ∈ 1:10
p2020abs2[i, 4] = p2020abs2[i, 2] + p2020abs2[i, 3]
end
for i ∈ 1:10
for j ∈ 2:4
p2020prc2[i, j] = p2020abs2[i, j] / p2020abs2[10, 4]
end
end
end
begin # First quarter of the year (date of INEGI 2020 census)
for i ∈ 1:9
for j ∈ 2:3
p2020abs1[i, j] = Int(round((p2020abs[i, j] + p2020abs2[i, j]) / 2))
end
end
p2020abs1[10, 2] = sum(p2020abs1.hom[1:9])
p2020abs1[10, 3] = sum(p2020abs1.muj[1:9])
for i ∈ 1:10
p2020abs1[i, 4] = p2020abs1[i, 2] + p2020abs1[i, 3]
end
for i ∈ 1:10
for j ∈ 2:4
p2020prc1[i, j] = p2020abs1[i, j] / p2020abs1[10, 4]
end
end
end
begin # weights to complete INEGI census 2020: {e06, e11} × {Hom, Muj}
Hom = sum(p2020abs1.hom[2:3])
e06Hom = p2020abs1.hom[2] / Hom
e11Hom = p2020abs1.hom[3] / Hom
Muj = sum(p2020abs1.muj[2:3])
e06Muj = p2020abs1.muj[2] / Muj
e11Muj = p2020abs1.muj[3] / Muj
[e06Hom e06Muj; e11Hom e11Muj]
end
## 2021
begin # beginning of the year
dh = dini[i2021hom, :]
for i ∈ 1:nrow(dh)
p2021abs[d[dh.EDAD[i]], 2] += dh.POBLACION[i]
end
dm = dini[i2021muj, :]
for i ∈ 1:nrow(dm)
p2021abs[d[dm.EDAD[i]], 3] += dm.POBLACION[i]
end
p2021abs[10, 2] = sum(p2021abs.hom[1:9])
p2021abs[10, 3] = sum(p2021abs.muj[1:9])
for i ∈ 1:10
p2021abs[i, 4] = p2021abs[i, 2] + p2021abs[i, 3]
end
for i ∈ 1:10
for j ∈ 2:4
p2021prc[i, j] = p2021abs[i, j] / p2021abs[10, 4]
end
end
end
## 2022
begin # beginning of the year
dh = dini[i2022hom, :]
for i ∈ 1:nrow(dh)
p2022abs[d[dh.EDAD[i]], 2] += dh.POBLACION[i]
end
dm = dini[i2022muj, :]
for i ∈ 1:nrow(dm)
p2022abs[d[dm.EDAD[i]], 3] += dm.POBLACION[i]
end
p2022abs[10, 2] = sum(p2022abs.hom[1:9])
p2022abs[10, 3] = sum(p2022abs.muj[1:9])
for i ∈ 1:10
p2022abs[i, 4] = p2022abs[i, 2] + p2022abs[i, 3]
end
for i ∈ 1:10
for j ∈ 2:4
p2022prc[i, j] = p2022abs[i, j] / p2022abs[10, 4]
end
end
end
## 2023
begin # beginning of the year
dh = dini[i2023hom, :]
for i ∈ 1:nrow(dh)
p2023abs[d[dh.EDAD[i]], 2] += dh.POBLACION[i]
end
dm = dini[i2023muj, :]
for i ∈ 1:nrow(dm)
p2023abs[d[dm.EDAD[i]], 3] += dm.POBLACION[i]
end
p2023abs[10, 2] = sum(p2023abs.hom[1:9])
p2023abs[10, 3] = sum(p2023abs.muj[1:9])
for i ∈ 1:10
p2023abs[i, 4] = p2023abs[i, 2] + p2023abs[i, 3]
end
for i ∈ 1:10
for j ∈ 2:4
p2023prc[i, j] = p2023abs[i, j] / p2023abs[10, 4]
end
end
end
## Generate files
begin
CSV.write("conapo2020.csv", p2020abs)
println("created file: conapo2020.csv")
CSV.write("conapo2020trim1.csv", p2020abs1)
println("created file: conapo2020trim1.csv")
CSV.write("conapo2021.csv", p2021abs)
println("created file: conapo2021.csv")
CSV.write("conapo2022.csv", p2022abs)
println("created file: conapo2022.csv")
CSV.write("conapo2023.csv", p2023abs)
println("created file: conapo2023.csv")
end
println("*** Population data processing finished.")