forked from protonx-tf-03-projects/CharCNN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
76 lines (66 loc) · 3.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
from argparse import ArgumentParser
from data import Dataset
import pandas as pd
from model import *
import tensorflow as tf
from constant import *
from tensorflow.keras.optimizers import *
tf.config.experimental_run_functions_eagerly(True)
if __name__ == "__main__":
parser = ArgumentParser()
home_dir = os.getcwd()
# Arguments users used when running command lines
parser.add_argument("--batch-size", default=128, type=int)
parser.add_argument("--mode",default= "small", type= str)
parser.add_argument("--vocab-folder", default= '{}/saved_vocab/CharCNN/'.format(home_dir), type= str)
parser.add_argument("--train-file", default= 'data.csv', type= str)
parser.add_argument("--epochs", default=3, type=int)
parser.add_argument("--embedding-size", default=100, type=int)
parser.add_argument("--test-size", default=0.3, type=float)
parser.add_argument("--num-classes", default=2, type=float)
parser.add_argument("--learning-rate", default=0.001, type=float)
parser.add_argument("--smallCharCNN-folder", default="smallCharCNN", type=str)
parser.add_argument("--largeCharCNN-folder", default="largeCharCNN", type=str)
parser.add_argument("--padding", default="same", type=str)
args = parser.parse_args()
print('---------------------Welcome to CharCNN-------------------')
print("Team Leader")
print("1. Github: hoangcaobao")
print("Team member")
print('1. Github: Nguyendat-bit')
print('2. Github: aestheteeism')
print('---------------------------------------------------------------------')
print('Training CharCNN model with hyper-params:')
for i, arg in enumerate(vars(args)):
print('{}. {}: {}'.format(i, arg, vars(args)[arg]))
print('===========================')
# Load data
print("-------------TRAINING DATA------------")
dataset = Dataset(vocab_folder= args.vocab_folder)
x_train, x_val, y_train, y_val = dataset.build_dataset(data_path = args.train_file, test_size= args.test_size)
# Initializing models
# Small-CharCNN
small_CharCNN = CharCNN(dataset.vocab_size, args.embedding_size, dataset.max_len, args.num_classes, feature = "small", padding= args.padding)
# Large-CharCNN
large_CharCNN = CharCNN(dataset.vocab_size, args.embedding_size, dataset.max_len, args.num_classes, feature = "large", padding= args.padding)
# Set up loss function
loss = tf.keras.losses.SparseCategoricalCrossentropy()
# Optimizer Definition
adam = tf.keras.optimizers.Adam(learning_rate= args.learning_rate)
# Compile optimizer and loss function into models
small_CharCNN.compile(optimizer= adam, loss = loss, metrics = [metric])
large_CharCNN.compile(optimizer= adam, loss = loss, metrics = [metric])
# Do Training model
if args.mode == 'small' or args.mode == 'all':
print("-------------Training Small CharCNN------------")
small_CharCNN.fit(x_train,y_train,validation_data= (x_val,y_val), epochs= args.epochs, batch_size= args.batch_size, validation_batch_size= args.batch_size)
print("----------Finish Training Small CharCNN--------")
# Saving models
small_CharCNN.save(args.smallCharCNN_folder)
if args.mode == 'large' or args.mode == 'all':
print("-------------Training Large CharCNN------------")
large_CharCNN.fit(x_train,y_train, validation_data= (x_val,y_val), epochs= args.epochs, batch_size = args.batch_size, validation_batch_size = args.batch_size)
print("----------Finish Training Large CharCNN--------")
# Saving models
large_CharCNN.save(args.largeCharCNN_folder)