-
Notifications
You must be signed in to change notification settings - Fork 5
/
model.py
610 lines (520 loc) · 25.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
from torch.nn.functional import cross_entropy,softmax
from transformers import BertModel, BertConfig
class Eyettention(nn.Module):
def __init__(self, cf):
super(Eyettention, self).__init__()
self.cf = cf
self.window_width = 1 #D
self.atten_type = cf["atten_type"]
self.hidden_size = 128
#Word-Sequence Encoder
encoder_config = BertConfig.from_pretrained(self.cf["model_pretrained"])
encoder_config.output_hidden_states=True
# initiate Bert with pre-trained weights
print("keeping Bert with pre-trained weights")
self.encoder = BertModel.from_pretrained(self.cf["model_pretrained"], config = encoder_config)
self.encoder.eval()
#freeze the parameters in Bert model
for param in self.encoder.parameters():
param.requires_grad = False
self.embedding_dropout = nn.Dropout(0.4)
self.encoder_lstm = nn.LSTM(input_size = 768, #BERT embedding size
hidden_size = int(self.hidden_size/2),
num_layers = 8,
batch_first=True,
bidirectional=True,
dropout=0.2)
#Fixation-Sequence Encoder
self.position_embeddings = nn.Embedding(encoder_config.max_position_embeddings, encoder_config.hidden_size)
self.LayerNorm = nn.LayerNorm(encoder_config.hidden_size, eps=encoder_config.layer_norm_eps)
#The scanpath is generated in an autoregressive manner, the output of the previous timestep is fed to the input of the next time step.
#So we use decoder cells and loop over all timesteps.
#initialize eight decoder cells
self.decoder_cell1 = nn.LSTMCell(768+2, self.hidden_size) #first layer input size = #BERT embedding size + two fixation attributes:landing position and fixiation duration
self.decoder_cell2 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell3 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell4 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell5 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell6 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell7 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell8 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.dropout_LSTM = nn.Dropout(0.2)
#Cross-Attention
self.attn = nn.Linear(self.hidden_size, self.hidden_size+1) # +1 acount for the word length feature
#Decoder
#initialize five dense layers
self.dropout_dense = nn.Dropout(0.2)
self.decoder_dense = nn.Sequential(
self.dropout_dense,
nn.Linear(self.hidden_size*2+1, 512),
nn.ReLU(),
self.dropout_dense,
nn.Linear(512, 256),
nn.ReLU(),
self.dropout_dense,
nn.Linear(256, 256),
nn.ReLU(),
self.dropout_dense,
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, self.cf["max_sn_len"]*2-3), #number of output classes
)
#for scanpath generation
self.softmax = nn.Softmax(dim=1)
def pool_subword_to_word(self, subword_emb, word_ids_sn, target, pool_method='sum'):
# batching computing
# Pool bert token (subword) to word level
if target == 'sn':
max_len = self.cf["max_sn_len"] #CLS and SEP included
elif target == 'sp':
max_len = self.cf["max_sp_len"] - 1 #do not account the 'SEP' token
merged_word_emb = torch.empty(subword_emb.shape[0], 0, 768).to(subword_emb.device)
for word_idx in range(max_len):
word_mask = (word_ids_sn == word_idx).unsqueeze(2).repeat(1, 1, 768)
#pooling method -> sum
if pool_method=='sum':
pooled_word_emb = torch.sum(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
elif pool_method=='mean':
pooled_word_emb = torch.mean(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
merged_word_emb = torch.cat([merged_word_emb, pooled_word_emb], dim=1)
mask_word = torch.sum(merged_word_emb, 2).bool()
return merged_word_emb, mask_word
def encode(self, sn_emd, sn_mask, word_ids_sn, sn_word_len):
#Word-Sequence Encoder
outputs = self.encoder(input_ids=sn_emd, attention_mask=sn_mask)
hidden_rep_orig, pooled_rep = outputs[0], outputs[1]
if word_ids_sn != None:
# Pool bert subword to word level for english corpus
merged_word_emb, sn_mask_word = self.pool_subword_to_word(hidden_rep_orig,
word_ids_sn,
target='sn',
pool_method='sum')
else:#no pooling for Chinese corpus
merged_word_emb, sn_mask_word = hidden_rep_orig, None
hidden_rep = self.embedding_dropout(merged_word_emb)
x, (hn, hc) = self.encoder_lstm(hidden_rep, None)
#concatenate with the word length feature
x = torch.cat((x, sn_word_len[:, :, None]), dim=2)
return x, sn_mask_word
def cross_attention(self, ht, hs, sn_mask, cur_word_index):
# General Attention:
# score(ht,hs) = (ht^T)(Wa)hs
# hs is the output from word-Sequence Encoder
# ht is the previous hidden state from Fixation-Sequence Encoder
# self.attn(o): [batch, step, units]
attn_prod = torch.matmul(self.attn(ht.unsqueeze(1)), hs.permute(0,2,1)) # [batch, 1, step]
if self.atten_type == 'global':#global attention
attn_prod += (~sn_mask).unsqueeze(1) * -1e9
att_weight = softmax(attn_prod, dim=2) # [batch, 1, step]
else:#local attention
# current fixated word index
aligned_position = cur_word_index
# Get window borders
left = torch.where(aligned_position - self.window_width >= 0, aligned_position - self.window_width, 0)
right = torch.where(aligned_position + self.window_width <= self.cf["max_sn_len"]-1, aligned_position + self.window_width, self.cf["max_sn_len"]-1)
#exclude padding tokens
#only consider words in the window
sen_seq = torch.arange(self.cf["max_sn_len"])[None,:].expand(sn_mask.shape[0],self.cf["max_sn_len"]).to(sn_mask.device)
outside_win_mask = (sen_seq < left.unsqueeze(1)) + (sen_seq > right.unsqueeze(1))
attn_prod += (~sn_mask + outside_win_mask).unsqueeze(1) * -1e9
att_weight = softmax(attn_prod, dim=2) # [batch, 1, step]
if self.atten_type == 'local-g': # local attention with Gaussian Kernel
gauss = lambda s: torch.exp(-torch.square(s - aligned_position.unsqueeze(1)) / (2 * torch.square(torch.tensor(self.window_width / 2))))
gauss_factor = gauss(sen_seq)
att_weight = att_weight * gauss_factor.unsqueeze(1)
return att_weight
def decode(self, sp_emd, sn_mask, sp_pos, enc_out, sp_fix_dur, sp_landing_pos, word_ids_sp):
# Fixation-Sequence Encoder + Decoder
# Initialize hidden state and cell state with zeros,
hn = torch.zeros(8, sp_emd.shape[0], self.hidden_size).to(sp_emd.device)
hc = torch.zeros(8, sp_emd.shape[0], self.hidden_size).to(sp_emd.device)
hx, cx = hn[0,:,:], hc[0,:,:]
hx2, cx2 = hn[1,:,:], hc[1,:,:]
hx3, cx3 = hn[2,:,:], hc[2,:,:]
hx4, cx4 = hn[3,:,:], hc[3,:,:]
hx5, cx5 = hn[4,:,:], hc[4,:,:]
hx6, cx6 = hn[5,:,:], hc[5,:,:]
hx7, cx7 = hn[6,:,:], hc[6,:,:]
hx8, cx8 = hn[7,:,:], hc[7,:,:]
dec_emb_in = self.encoder.embeddings.word_embeddings(sp_emd[:, :-1])
if word_ids_sp is not None:
# Pool bert subword to word level for English corpus
sp_merged_word_emd, sp_mask_word = self.pool_subword_to_word(dec_emb_in,
word_ids_sp[:,:-1],
target='sp',
pool_method='sum')
else:#no pooling for Chinese corpus
sp_merged_word_emd, sp_mask_word = dec_emb_in, None
#add positional embeddings
position_embeddings = self.position_embeddings(sp_pos[:, :-1])
dec_emb_in = sp_merged_word_emd+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
dec_emb_in = dec_emb_in.permute(1,0,2) # [step, n, emb_dim]
dec_emb_in = self.embedding_dropout(dec_emb_in)
#concatenate two additional gaze features
if sp_landing_pos is not None:
dec_emb_in = torch.cat((dec_emb_in, sp_landing_pos.permute(1,0)[:-1, :, None]), dim=2)
if sp_fix_dur is not None:
dec_emb_in = torch.cat((dec_emb_in, sp_fix_dur.permute(1,0)[:-1, :, None]), dim=2)
#Predict output for each time step in turn
output = []
#save attention scores for visualization
atten_weights_batch = torch.empty(sp_emd.shape[0], 0, self.cf["max_sn_len"]).to(sp_emd.device)
for i in range(dec_emb_in.shape[0]):
hx, cx = self.decoder_cell1(dec_emb_in[i], (hx, cx)) # [batch, units]
hx2, cx2 = self.decoder_cell2(self.dropout_LSTM(hx), (hx2, cx2))
hx3, cx3 = self.decoder_cell3(self.dropout_LSTM(hx2), (hx3, cx3))
hx4, cx4 = self.decoder_cell4(self.dropout_LSTM(hx3), (hx4, cx4))
hx5, cx5 = self.decoder_cell5(self.dropout_LSTM(hx4), (hx5, cx5))
hx6, cx6 = self.decoder_cell6(self.dropout_LSTM(hx5), (hx6, cx6))
hx7, cx7 = self.decoder_cell7(self.dropout_LSTM(hx6), (hx7, cx7))
hx8, cx8 = self.decoder_cell8(self.dropout_LSTM(hx7), (hx8, cx8))
att_weight = self.cross_attention(ht=hx8,
hs=enc_out,
sn_mask=sn_mask,
cur_word_index=sp_pos[:, i])
atten_weights_batch = torch.cat([atten_weights_batch, att_weight], dim=1)
context = torch.matmul(att_weight, enc_out) # [batch, 1, units]
#Decoder
hc = torch.cat([context.squeeze(1),hx8],dim=1) # [batch, units *2]
result = self.decoder_dense(hc) # [batch, dec_o_dim]
output.append(result)
output = torch.stack(output,dim=0) # [step, batch, dec_o_dim]
#output = F.softmax(output, dim=2) # cross entropy in pytorch includes softmax
return output.permute(1,0,2), atten_weights_batch # [batch, step, dec_o_dim]
def forward(self, sn_emd, sn_mask, sp_emd, sp_pos, word_ids_sn, word_ids_sp, sp_fix_dur, sp_landing_pos, sn_word_len):
x, sn_mask_word = self.encode(sn_emd, sn_mask, word_ids_sn, sn_word_len) # [batch, step, units], [batch, units]
if sn_mask_word is None:#for Chinese dataset without token pooling
sn_mask = torch.Tensor.bool(sn_mask)
pred, atten_weights = self.decode(sp_emd,
sn_mask,
sp_pos,
x,
sp_fix_dur,
sp_landing_pos,
word_ids_sp) # [batch, step, dec_o_dim]
else:#for English dataset with token pooling
pred, atten_weights = self.decode(sp_emd,
sn_mask_word,
sp_pos,
x,
sp_fix_dur,
sp_landing_pos,
word_ids_sp) # [batch, step, dec_o_dim]
return pred, atten_weights
def scanpath_generation(self, sn_emd,
sn_mask,
word_ids_sn,
sn_word_len,
le,
max_pred_len=60):
#compute the scan path generated from the model when the first CLS taken is given
enc_out, sn_mask_word = self.encode(sn_emd, sn_mask, word_ids_sn, sn_word_len)
if sn_mask_word is None:
sn_mask = torch.Tensor.bool(sn_mask)
else:
sn_mask = sn_mask_word
sn_len = torch.sum(sn_mask, axis=1)-2
#decode
# Initialize hidden state and cell state with zeros,
hn = torch.zeros(8, sn_emd.shape[0], self.hidden_size).to(sn_emd.device)
hc = torch.zeros(8, sn_emd.shape[0], self.hidden_size).to(sn_emd.device)
hx, cx = hn[0,:,:], hc[0,:,:]
hx2, cx2 = hn[1,:,:], hc[1,:,:]
hx3, cx3 = hn[2,:,:], hc[2,:,:]
hx4, cx4 = hn[3,:,:], hc[3,:,:]
hx5, cx5 = hn[4,:,:], hc[4,:,:]
hx6, cx6 = hn[5,:,:], hc[5,:,:]
hx7, cx7 = hn[6,:,:], hc[6,:,:]
hx8, cx8 = hn[7,:,:], hc[7,:,:]
#use CLS token (101) as start token
dec_in_start = (torch.ones(sn_mask.shape[0]) * 101).long().to(sn_mask.device)
dec_emb_in = self.encoder.embeddings.word_embeddings(dec_in_start) # [batch, emb_dim]
#dec_in_start = sp_emd[:, 0]
#dec_emb_in = self.encoder.embeddings.word_embeddings(dec_in_start) # [batch, emb_dim]
#add positional embeddings
start_pos = torch.zeros(sn_mask.shape[0]).to(sn_mask.device)
position_embeddings = self.position_embeddings(start_pos.long())
dec_emb_in = dec_emb_in+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
#concatenate two additional gaze features, which are set to zeros for CLS token
dec_in = torch.cat((dec_emb_in, torch.zeros(dec_emb_in.shape[0],2).to(sn_emd.device)), dim=1)
#generate fixation one by one in an autoregressive way
output = []
density_prediction = []
pred_counter = 0
#output.append(sp_pos[:, pred_counter])
output.append(start_pos.long())
for p in range(max_pred_len-1):
hx, cx = self.decoder_cell1(dec_in, (hx, cx)) # [batch, units]
hx2, cx2 = self.decoder_cell2(self.dropout_LSTM(hx), (hx2, cx2))
hx3, cx3 = self.decoder_cell3(self.dropout_LSTM(hx2), (hx3, cx3))
hx4, cx4 = self.decoder_cell4(self.dropout_LSTM(hx3), (hx4, cx4))
hx5, cx5 = self.decoder_cell5(self.dropout_LSTM(hx4), (hx5, cx5))
hx6, cx6 = self.decoder_cell6(self.dropout_LSTM(hx5), (hx6, cx6))
hx7, cx7 = self.decoder_cell7(self.dropout_LSTM(hx6), (hx7, cx7))
hx8, cx8 = self.decoder_cell8(self.dropout_LSTM(hx7), (hx8, cx8))
att_weight = self.cross_attention(ht=hx8,
hs=enc_out,
sn_mask=sn_mask,
cur_word_index=output[-1])
context = torch.matmul(att_weight, enc_out) # [batch, 1, units]
hc = torch.cat([context.squeeze(1),hx8],dim=1) # [batch, units *2]
result = self.decoder_dense(hc) # [batch, dec_o_dim]
result = self.softmax(result) # [batch, dec_o_dim]
density_prediction.append(result)
#we can either take argmax or sampling from the output distribution,
#we do sampling in the paper
#pred_indx = result.argmax(dim=1)
#sampling next fixation location according to the distribution
pred_indx = torch.multinomial(result, 1)
pred_class = [le.classes_[pred_indx[i]] for i in torch.arange(result.shape[0])]
pred_class = torch.from_numpy(np.array(pred_class)).to(sn_emd.device)
#predict fixation word index = last fixation word index + predicted saccade range
pred_pos = output[-1] + pred_class
#larger than sentence max length -- set to sentence length+1, i.e. token <'SEP'>
#prepare the input to the next timstep
input_ids = []
for i in range(pred_pos.shape[0]):
if pred_pos[i] > sn_len[i]:
pred_pos[i] = sn_len[i]+1
elif pred_pos[i] < 1:
pred_pos[i] = 1
if word_ids_sn is not None:
input_ids.append(sn_emd[i, word_ids_sn[i,:] == pred_pos[i]])
else:
input_ids.append(sn_emd[i, pred_pos[i]])
output.append(pred_pos)
#prepare next timestamp input token
pred_counter += 1
if word_ids_sn is not None:
#merge tokens
dec_emb_in = torch.empty(0, 768).to(sn_emd.device)
for id in input_ids:
dec_emb_in = torch.cat([dec_emb_in, torch.sum(self.encoder.embeddings.word_embeddings(id), axis=0)[None,:]], dim=0)
else:
input_ids = torch.stack(input_ids)
dec_emb_in = self.encoder.embeddings.word_embeddings(input_ids) # [batch, emb_dim]
#add positional embeddings
position_embeddings = self.position_embeddings(output[-1])
dec_emb_in = dec_emb_in+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
#concatenate two additional gaze features
dec_in = torch.cat((dec_emb_in, torch.zeros(dec_emb_in.shape[0],2).to(sn_emd.device)), dim=1)
output = torch.stack(output,dim=0) # [step, batch]
return output.permute(1,0), density_prediction # [batch, step]
class Eyettention_readerID(nn.Module):
def __init__(self, cf):
super(Eyettention_readerID, self).__init__()
self.cf = cf
self.window_width = 1 #D
self.atten_type = cf["atten_type"]
self.hidden_size = 128
self.sub_emb_size = cf["subid_emb_size"]
#Word-Sequence Encoder
encoder_config = BertConfig.from_pretrained(self.cf["model_pretrained"])
encoder_config.output_hidden_states=True
# initiate Bert with pre-trained weights
print("keeping Bert with pre-trained weights")
self.encoder = BertModel.from_pretrained(self.cf["model_pretrained"], config = encoder_config)
self.encoder.eval()
#freeze the parameters in Bert model
for param in self.encoder.parameters():
param.requires_grad = False
self.embedding_dropout = nn.Dropout(0.4)
self.encoder_lstm = nn.LSTM(input_size = 768, #BERT embedding size
hidden_size = int(self.hidden_size/2),
num_layers = 8,
batch_first=True,
bidirectional=True,
dropout=0.2)
#Fixation-Sequence Encoder
self.position_embeddings = nn.Embedding(encoder_config.max_position_embeddings, encoder_config.hidden_size)
self.LayerNorm = nn.LayerNorm(encoder_config.hidden_size, eps=encoder_config.layer_norm_eps)
#for reader-specific setting
self.sub_embeddings = nn.Embedding(400, self.sub_emb_size)
#The scanpath is generated in an autoregressive manner, the output of the previous timestep is fed to the input of the next time step.
#So we use decoder cells and loop over all timesteps.
#initialize eight decoder cells
self.decoder_cell1 = nn.LSTMCell(768+2+self.sub_emb_size, self.hidden_size) #first layer input size = #BERT embedding size + two fixation attributes:landing position and fixiation duration
self.decoder_cell2 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell3 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell4 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell5 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell6 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell7 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.decoder_cell8 = nn.LSTMCell(self.hidden_size, self.hidden_size)
self.dropout_LSTM = nn.Dropout(0.2)
#Cross-Attention
self.attn = nn.Linear(self.hidden_size, self.hidden_size+1) #+1 acoount for the word length feature
#Decoder
#initialize five dense layers
self.dropout_dense = nn.Dropout(0.2)
self.decoder_dense = nn.Sequential(
self.dropout_dense,
nn.Linear(self.hidden_size*2+1, 512),
nn.ReLU(),
self.dropout_dense,
nn.Linear(512, 256),
nn.ReLU(),
self.dropout_dense,
nn.Linear(256, 256),
nn.ReLU(),
self.dropout_dense,
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, self.cf["max_sn_len"]*2-3), #number of output classes
)
#for scanpath generation
self.softmax = nn.Softmax(dim=1)
def pool_subword_to_word(self, subword_emb, word_ids_sn, target, pool_method='sum'):
# batching computing
# Pool bert token (subword) to word level
if target == 'sn':
max_len = self.cf["max_sn_len"] #CLS and SEP included
elif target == 'sp':
max_len = self.cf["max_sp_len"] - 1 #do not account the 'SEP' token
merged_word_emb = torch.empty(subword_emb.shape[0], 0, 768).to(subword_emb.device)
for word_idx in range(max_len):
word_mask = (word_ids_sn == word_idx).unsqueeze(2).repeat(1, 1, 768)
#pooling method -> sum
if pool_method=='sum':
pooled_word_emb = torch.sum(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
elif pool_method=='mean':
pooled_word_emb = torch.mean(subword_emb * word_mask, 1).unsqueeze(1) #[batch, 1, 768]
merged_word_emb = torch.cat([merged_word_emb, pooled_word_emb], dim=1)
mask_word = torch.sum(merged_word_emb, 2).bool()
return merged_word_emb, mask_word
def encode(self, sn_emd, sn_mask, word_ids_sn, sn_word_len):
#Word-Sequence Encoder
outputs = self.encoder(input_ids=sn_emd, attention_mask=sn_mask)
hidden_rep_orig, pooled_rep = outputs[0], outputs[1]
if word_ids_sn != None:
# Pool bert subword to word level for english corpus
merged_word_emb, sn_mask_word = self.pool_subword_to_word(hidden_rep_orig,
word_ids_sn,
target='sn',
pool_method='sum')
else:#no pooling for Chinese corpus
merged_word_emb, sn_mask_word = hidden_rep_orig, None
hidden_rep = self.embedding_dropout(merged_word_emb)
x, (hn, hc) = self.encoder_lstm(hidden_rep, None)
#concatenate with the word length feature
x = torch.cat((x, sn_word_len[:, :, None]), dim=2)
return x, sn_mask_word
def cross_attention(self, ht, hs, sn_mask, cur_word_index):
# General Attention:
# score(ht,hs) = (ht^T)(Wa)hs
# hs is the output from word-Sequence Encoder
# ht is the previous hidden state from Fixation-Sequence Encoder
# self.attn(o): [batch, step, units]
attn_prod = torch.matmul(self.attn(ht.unsqueeze(1)), hs.permute(0,2,1)) # [batch, 1, step]
if self.atten_type == 'global':#global attention
attn_prod += (~sn_mask).unsqueeze(1) * -1e9
att_weight = softmax(attn_prod, dim=2) # [batch, 1, step]
else:#local attention
# current fixated word index
aligned_position = cur_word_index
# Get window borders
left = torch.where(aligned_position - self.window_width >= 0, aligned_position - self.window_width, 0)
right = torch.where(aligned_position + self.window_width <= self.cf["max_sn_len"]-1, aligned_position + self.window_width, self.cf["max_sn_len"]-1)
#exclude padding tokens
#only consider words in the window
sen_seq = torch.arange(self.cf["max_sn_len"])[None,:].expand(sn_mask.shape[0],self.cf["max_sn_len"]).to(sn_mask.device)
outside_win_mask = (sen_seq < left.unsqueeze(1)) + (sen_seq > right.unsqueeze(1))
attn_prod += (~sn_mask + outside_win_mask).unsqueeze(1) * -1e9
att_weight = softmax(attn_prod, dim=2) # [batch, 1, step]
if self.atten_type == 'local-g': # local attention with Gaussian Kernel
gauss = lambda s: torch.exp(-torch.square(s - aligned_position.unsqueeze(1)) / (2 * torch.square(torch.tensor(self.window_width / 2))))
gauss_factor = gauss(sen_seq)
att_weight = att_weight * gauss_factor.unsqueeze(1)
return att_weight
def decode(self, sp_emd, sn_mask, sp_pos, enc_out, sp_fix_dur, sp_landing_pos, word_ids_sp, sub_id):
#Fixation-Sequence Encoder + Decoder
# Initialize hidden state and cell state with zeros
hn = torch.zeros(8, sp_emd.shape[0], self.hidden_size).to(sp_emd.device)
hc = torch.zeros(8, sp_emd.shape[0], self.hidden_size).to(sp_emd.device)
hx, cx = hn[0,:,:], hc[0,:,:]
hx2, cx2 = hn[1,:,:], hc[1,:,:]
hx3, cx3 = hn[2,:,:], hc[2,:,:]
hx4, cx4 = hn[3,:,:], hc[3,:,:]
hx5, cx5 = hn[4,:,:], hc[4,:,:]
hx6, cx6 = hn[5,:,:], hc[5,:,:]
hx7, cx7 = hn[6,:,:], hc[6,:,:]
hx8, cx8 = hn[7,:,:], hc[7,:,:]
dec_emb_in = self.encoder.embeddings.word_embeddings(sp_emd[:, :-1])
if word_ids_sp is not None:
# Pool bert subword to word level for English corpus
sp_merged_word_emd, sp_mask_word = self.pool_subword_to_word(dec_emb_in,
word_ids_sp[:,:-1],
target='sp',
pool_method='sum')
else:#no pooling for Chinese
sp_merged_word_emd, sp_mask_word = dec_emb_in, None
#add positional embeddings and layer normalization
position_embeddings = self.position_embeddings(sp_pos[:, :-1])
dec_emb_in = sp_merged_word_emd+position_embeddings
dec_emb_in = self.LayerNorm(dec_emb_in)
dec_emb_in = dec_emb_in.permute(1,0,2) # [step, n, emb_dim]
dec_emb_in = self.embedding_dropout(dec_emb_in)
#concatenate two additional gaze features
if sp_landing_pos is not None:
dec_emb_in = torch.cat((dec_emb_in, sp_landing_pos.permute(1,0)[:-1, :, None]), dim=2)
if sp_fix_dur is not None:
dec_emb_in = torch.cat((dec_emb_in, sp_fix_dur.permute(1,0)[:-1, :, None]), dim=2)
#concatenate subject id for Eyettention_reader setting
if sub_id is not None:
dec_emb_in = torch.cat((dec_emb_in, self.sub_embeddings(sub_id).repeat(dec_emb_in.shape[0], 1, 1)), dim=2)
#Predict output for each time step in turn
output = []
#save attention scores for visualization
atten_weights_batch = torch.empty(sp_emd.shape[0], 0, self.cf["max_sn_len"]).to(sp_emd.device)
for i in range(dec_emb_in.shape[0]):
hx, cx = self.decoder_cell1(dec_emb_in[i], (hx, cx)) # [batch, units]
hx2, cx2 = self.decoder_cell2(self.dropout_LSTM(hx), (hx2, cx2))
hx3, cx3 = self.decoder_cell3(self.dropout_LSTM(hx2), (hx3, cx3))
hx4, cx4 = self.decoder_cell4(self.dropout_LSTM(hx3), (hx4, cx4))
hx5, cx5 = self.decoder_cell5(self.dropout_LSTM(hx4), (hx5, cx5))
hx6, cx6 = self.decoder_cell6(self.dropout_LSTM(hx5), (hx6, cx6))
hx7, cx7 = self.decoder_cell7(self.dropout_LSTM(hx6), (hx7, cx7))
hx8, cx8 = self.decoder_cell8(self.dropout_LSTM(hx7), (hx8, cx8))
att_weight = self.cross_attention(ht=hx8,
hs=enc_out,
sn_mask=sn_mask,
cur_word_index=sp_pos[:, i])
atten_weights_batch = torch.cat([atten_weights_batch, att_weight], dim=1)
context = torch.matmul(att_weight, enc_out) # [batch, 1, units]
#Decoder
hc = torch.cat([context.squeeze(1),hx8],dim=1) # [batch, units *2]
result = self.decoder_dense(hc) # [batch, dec_o_dim]
output.append(result)
output = torch.stack(output,dim=0) # [step, batch, dec_o_dim]
#output = F.softmax(output, dim=2) # cross entropy in pytorch includes softmax
return output.permute(1,0,2), atten_weights_batch # [batch, step, dec_o_dim]
def forward(self, sn_emd, sn_mask, sp_emd, sp_pos, word_ids_sn, word_ids_sp, sp_fix_dur, sp_landing_pos, sn_word_len, sub_id):
x, sn_mask_word = self.encode(sn_emd, sn_mask, word_ids_sn, sn_word_len) # [batch, step, units], [batch, units]
if sn_mask_word is None:#for Chinese dataset without token pooling
sn_mask = torch.Tensor.bool(sn_mask)
pred, atten_weights = self.decode(sp_emd,
sn_mask,
sp_pos,
x,
sp_fix_dur,
sp_landing_pos,
word_ids_sp,
sub_id) # [batch, step, dec_o_dim]
else:#for English dataset with token pooling
pred, atten_weights = self.decode(sp_emd,
sn_mask_word,
sp_pos,
x,
sp_fix_dur,
sp_landing_pos,
word_ids_sp,
sub_id) # [batch, step, dec_o_dim]
return pred, atten_weights