-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathnano_gui.cpp
582 lines (474 loc) · 15.8 KB
/
nano_gui.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
#include <Arduino.h>
#include <EEPROM.h>
#include "ubitx.h"
#include "nano_gui.h"
//#include "Adafruit_GFX.h"
//#include <XPT2046_Touchscreen.h>
#include <SPI.h>
#include <avr/pgmspace.h>
#define TFT_CS 10
#define TFT_RS 9
GFXfont *gfxFont = NULL;
//int touch_x, touch_y;
//XPT2046_Touchscreen ts(CS_PIN);
//TS_Point ts_point;
struct Point ts_point;
//filled from a test run of calibration routine
int slope_x=104, slope_y=137, offset_x=28, offset_y=29;
void readTouchCalibration(){
EEPROM.get(SLOPE_X, slope_x);
EEPROM.get(SLOPE_Y, slope_y);
EEPROM.get(OFFSET_X, offset_x);
EEPROM.get(OFFSET_Y, offset_y);
/*
//for debugging
Serial.print(slope_x); Serial.print(' ');
Serial.print(slope_y); Serial.print(' ');
Serial.print(offset_x); Serial.print(' ');
Serial.println(offset_y); Serial.println(' ');
*/
}
void writeTouchCalibration(){
EEPROM.put(SLOPE_X, slope_x);
EEPROM.put(SLOPE_Y, slope_y);
EEPROM.put(OFFSET_X, offset_x);
EEPROM.put(OFFSET_Y, offset_y);
}
#define Z_THRESHOLD 400
#define Z_THRESHOLD_INT 75
#define MSEC_THRESHOLD 3
#define SPI_SETTING SPISettings(2000000, MSBFIRST, SPI_MODE0)
static uint32_t msraw=0x80000000;
static int16_t xraw=0, yraw=0, zraw=0;
static uint8_t rotation = 1;
static int16_t touch_besttwoavg( int16_t x , int16_t y , int16_t z ) {
int16_t da, db, dc;
int16_t reta = 0;
if ( x > y ) da = x - y; else da = y - x;
if ( x > z ) db = x - z; else db = z - x;
if ( z > y ) dc = z - y; else dc = y - z;
if ( da <= db && da <= dc ) reta = (x + y) >> 1;
else if ( db <= da && db <= dc ) reta = (x + z) >> 1;
else reta = (y + z) >> 1; // else if ( dc <= da && dc <= db ) reta = (x + y) >> 1;
return (reta);
}
static void touch_update(){
int16_t data[6];
uint32_t now = millis();
if (now - msraw < MSEC_THRESHOLD) return;
SPI.beginTransaction(SPI_SETTING);
digitalWrite(CS_PIN, LOW);
SPI.transfer(0xB1 /* Z1 */);
int16_t z1 = SPI.transfer16(0xC1 /* Z2 */) >> 3;
int z = z1 + 4095;
int16_t z2 = SPI.transfer16(0x91 /* X */) >> 3;
z -= z2;
if (z >= Z_THRESHOLD) {
SPI.transfer16(0x91 /* X */); // dummy X measure, 1st is always noisy
data[0] = SPI.transfer16(0xD1 /* Y */) >> 3;
data[1] = SPI.transfer16(0x91 /* X */) >> 3; // make 3 x-y measurements
data[2] = SPI.transfer16(0xD1 /* Y */) >> 3;
data[3] = SPI.transfer16(0x91 /* X */) >> 3;
}
else data[0] = data[1] = data[2] = data[3] = 0; // Compiler warns these values may be used unset on early exit.
data[4] = SPI.transfer16(0xD0 /* Y */) >> 3; // Last Y touch power down
data[5] = SPI.transfer16(0) >> 3;
digitalWrite(CS_PIN, HIGH);
SPI.endTransaction();
//Serial.printf("z=%d :: z1=%d, z2=%d ", z, z1, z2);
if (z < 0) z = 0;
if (z < Z_THRESHOLD) { // if ( !touched ) {
// Serial.println();
zraw = 0;
return;
}
zraw = z;
int16_t x = touch_besttwoavg( data[0], data[2], data[4] );
int16_t y = touch_besttwoavg( data[1], data[3], data[5] );
//Serial.printf(" %d,%d", x, y);
//Serial.println();
if (z >= Z_THRESHOLD) {
msraw = now; // good read completed, set wait
switch (rotation) {
case 0:
xraw = 4095 - y;
yraw = x;
break;
case 1:
xraw = x;
yraw = y;
break;
case 2:
xraw = y;
yraw = 4095 - x;
break;
default: // 3
xraw = 4095 - x;
yraw = 4095 - y;
}
}
}
boolean readTouch(){
touch_update();
if (zraw >= Z_THRESHOLD) {
ts_point.x = xraw;
ts_point.y = yraw;
// Serial.print(ts_point.x); Serial.print(",");Serial.println(ts_point.y);
return true;
}
return false;
}
void scaleTouch(struct Point *p){
p->x = ((long)(p->x - offset_x) * 10l)/ (long)slope_x;
p->y = ((long)(p->y - offset_y) * 10l)/ (long)slope_y;
// Serial.print(p->x); Serial.print(",");Serial.println(p->y);
// p->y = ((long)(p->y) * 10l)/(long)(slope_y) - offset_y;
}
#if !defined(__INT_MAX__) || (__INT_MAX__ > 0xFFFF)
#define pgm_read_pointer(addr) ((void *)pgm_read_dword(addr))
#else
#define pgm_read_pointer(addr) ((void *)pgm_read_word(addr))
#endif
inline GFXglyph * pgm_read_glyph_ptr(const GFXfont *gfxFont, uint8_t c)
{
#ifdef __AVR__
return &(((GFXglyph *)pgm_read_pointer(&gfxFont->glyph))[c]);
#else
// expression in __AVR__ section may generate "dereferencing type-punned pointer will break strict-aliasing rules" warning
// In fact, on other platforms (such as STM32) there is no need to do this pointer magic as program memory may be read in a usual way
// So expression may be simplified
return gfxFont->glyph + c;
#endif //__AVR__
}
inline uint8_t * pgm_read_bitmap_ptr(const GFXfont *gfxFont){
#ifdef __AVR__
return (uint8_t *)pgm_read_pointer(&gfxFont->bitmap);
#else
// expression in __AVR__ section generates "dereferencing type-punned pointer will break strict-aliasing rules" warning
// In fact, on other platforms (such as STM32) there is no need to do this pointer magic as program memory may be read in a usual way
// So expression may be simplified
return gfxFont->bitmap;
#endif //__AVR__
}
inline static void utft_write(unsigned char d){
SPI.transfer(d);
}
inline static void utftCmd(unsigned char VH){
*(portOutputRegister(digitalPinToPort(TFT_RS))) &= ~digitalPinToBitMask(TFT_RS);//LCD_RS=0;
utft_write(VH);
}
inline static void utftData(unsigned char VH){
*(portOutputRegister(digitalPinToPort(TFT_RS)))|= digitalPinToBitMask(TFT_RS);//LCD_RS=1;
utft_write(VH);
}
static void utftAddress(unsigned int x1,unsigned int y1,unsigned int x2,unsigned int y2){
utftCmd(0x2a);
utftData(x1>>8);
utftData(x1);
utftData(x2>>8);
utftData(x2);
utftCmd(0x2b);
utftData(y1>>8);
utftData(y1);
utftData(y2>>8);
utftData(y2);
utftCmd(0x2c);
}
void displayPixel(unsigned int x, unsigned int y, unsigned int c){
unsigned int i,j;
digitalWrite(TFT_CS,LOW);
utftCmd(0x02c); //write_memory_start
utftAddress(x,y,x,y);
utftData(c>>8);
utftData(c);
digitalWrite(TFT_CS,HIGH);
}
#define MAX_VBUFF 64
char vbuff[64];
void quickFill(int x1, int y1, int x2, int y2, int color){
unsigned long ncount = (unsigned long)(x2 - x1+1) * (unsigned long)(y2-y1+1);
int k = 0;
//set the window
digitalWrite(TFT_CS,LOW);
utftCmd(0x02c); //write_memory_start
utftAddress(x1,y1,x2,y2);
*(portOutputRegister(digitalPinToPort(TFT_RS)))|= digitalPinToBitMask(TFT_RS);//LCD_RS=1;
while(ncount){
k = 0;
for (int i = 0; i < MAX_VBUFF/2; i++){
vbuff[k++] = color >> 8;
vbuff[k++] = color & 0xff;
}
if (ncount > MAX_VBUFF/2){
SPI.transfer(vbuff, MAX_VBUFF);
ncount -= MAX_VBUFF/2;
}
else{
SPI.transfer(vbuff, (int)ncount * 2);
ncount = 0;
}
checkCAT();
}
digitalWrite(TFT_CS, HIGH);
}
void displayHline(unsigned int x, unsigned int y, unsigned int l, unsigned int c){
quickFill(x,y,x+l,y,c);
}
void displayVline(unsigned int x, unsigned int y, unsigned int l, unsigned int c){
quickFill(x,y,x,y+l,c);
}
void displayClear(unsigned int color){
quickFill(0,0,319,239, color);
}
void displayRect(unsigned int x,unsigned int y,unsigned int w,unsigned int h,unsigned int c){
displayHline(x , y , w, c);
displayHline(x , y+h, w, c);
displayVline(x , y , h, c);
displayVline(x+w, y , h, c);
}
void displayFillrect(unsigned int x,unsigned int y,unsigned int w,unsigned int h,unsigned int c){
unsigned int i;
quickFill(x,y,x+w,y+h, c);
}
bool xpt2046_Init(){
pinMode(CS_PIN, OUTPUT);
digitalWrite(CS_PIN, HIGH);
}
void displayInit(void){
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV4); // 4 MHz (half speed)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
gfxFont = &ubitx_font;
pinMode(TFT_CS,OUTPUT);
pinMode(TFT_RS,OUTPUT);
digitalWrite(TFT_CS,LOW); //CS
utftCmd(0xCB);
utftData(0x39);
utftData(0x2C);
utftData(0x00);
utftData(0x34);
utftData(0x02);
utftCmd(0xCF);
utftData(0x00);
utftData(0XC1);
utftData(0X30);
utftCmd(0xE8);
utftData(0x85);
utftData(0x00);
utftData(0x78);
utftCmd(0xEA);
utftData(0x00);
utftData(0x00);
utftCmd(0xED);
utftData(0x64);
utftData(0x03);
utftData(0X12);
utftData(0X81);
utftCmd(0xF7);
utftData(0x20);
utftCmd(0xC0); //Power control
utftData(0x23); //VRH[5:0]
utftCmd(0xC1); //Power control
utftData(0x10); //SAP[2:0];BT[3:0]
utftCmd(0xC5); //VCM control
utftData(0x3e); //Contrast
utftData(0x28);
utftCmd(0xC7); //VCM control2
utftData(0x86); //--
utftCmd(0x36); // Memory Access Control
utftData(0x28); // Make this horizontal display
utftCmd(0x3A);
utftData(0x55);
utftCmd(0xB1);
utftData(0x00);
utftData(0x18);
utftCmd(0xB6); // Display Function Control
utftData(0x08);
utftData(0x82);
utftData(0x27);
utftCmd(0x11); //Exit Sleep
delay(120);
utftCmd(0x29); //Display on
utftCmd(0x2c);
digitalWrite(TFT_CS,HIGH);
//now to init the touch screen controller
//ts.begin();
//ts.setRotation(1);
xpt2046_Init();
readTouchCalibration();
}
// Draw a character
/**************************************************************************/
/*!
@brief Draw a single character
@param x Bottom left corner x coordinate
@param y Bottom left corner y coordinate
@param c The 8-bit font-indexed character (likely ascii)
@param color 16-bit 5-6-5 Color to draw chraracter with
@param bg 16-bit 5-6-5 Color to fill background with (if same as color, no background)
@param size_x Font magnification level in X-axis, 1 is 'original' size
@param size_y Font magnification level in Y-axis, 1 is 'original' size
*/
/**************************************************************************/
void displayChar(int16_t x, int16_t y, unsigned char c, uint16_t color, uint16_t bg) {
c -= (uint8_t)pgm_read_byte(&gfxFont->first);
GFXglyph *glyph = pgm_read_glyph_ptr(gfxFont, c);
uint8_t *bitmap = pgm_read_bitmap_ptr(gfxFont);
uint16_t bo = pgm_read_word(&glyph->bitmapOffset);
uint8_t w = pgm_read_byte(&glyph->width),
h = pgm_read_byte(&glyph->height);
int8_t xo = pgm_read_byte(&glyph->xOffset),
yo = pgm_read_byte(&glyph->yOffset);
uint8_t xx, yy, bits = 0, bit = 0;
int16_t xo16 = 0, yo16 = 0;
int k;
char vbuff[64]; // take a character that is upto 32 pixels wide (2 bytes per pixel)
digitalWrite(TFT_CS,LOW);
for(yy=0; yy<h; yy++) {
k = 0;
for(xx=0; xx<w; xx++) {
if(!(bit++ & 7)) {
bits = pgm_read_byte(&bitmap[bo++]);
}
if(bits & 0x80) {
vbuff[k++] = color >> 8;
vbuff[k++] = color & 0xff;
}
else {
vbuff[k++] = bg >> 8;
vbuff[k++] = bg & 0xff;
}
bits <<= 1;
}
utftAddress(x+xo,y+yo+yy,x+xo+w,y+yo+yy);
*(portOutputRegister(digitalPinToPort(TFT_RS)))|= digitalPinToBitMask(TFT_RS);//LCD_RS=1;
SPI.transfer(vbuff, k);
checkCAT();
}
}
int displayTextExtent(char *text) {
int ext = 0;
while(*text){
char c = *text++;
uint8_t first = pgm_read_byte(&gfxFont->first);
if((c >= first) && (c <= (uint8_t)pgm_read_byte(&gfxFont->last))) {
GFXglyph *glyph = pgm_read_glyph_ptr(gfxFont, c - first);
ext += (uint8_t)pgm_read_byte(&glyph->xAdvance);
}
}//end of the while loop of the characters to be printed
return ext;
}
void displayRawText(char *text, int x1, int y1, int color, int background){
while(*text){
char c = *text++;
uint8_t first = pgm_read_byte(&gfxFont->first);
if((c >= first) && (c <= (uint8_t)pgm_read_byte(&gfxFont->last))) {
GFXglyph *glyph = pgm_read_glyph_ptr(gfxFont, c - first);
uint8_t w = pgm_read_byte(&glyph->width),
h = pgm_read_byte(&glyph->height);
if((w > 0) && (h > 0)) { // Is there an associated bitmap?
int16_t xo = (int8_t)pgm_read_byte(&glyph->xOffset); // sic
displayChar(x1, y1+TEXT_LINE_HEIGHT, c, color, background);
checkCAT();
}
x1 += (uint8_t)pgm_read_byte(&glyph->xAdvance);
}
}//end of the while loop of the characters to be printed
}
// The generic routine to display one line on the LCD
void displayText(char *text, int x1, int y1, int w, int h, int color, int background, int border) {
displayFillrect(x1, y1, w ,h, background);
displayRect(x1, y1, w ,h, border);
x1 += (w - displayTextExtent(text))/2;
y1 += (h - TEXT_LINE_HEIGHT)/2;
while(*text){
char c = *text++;
uint8_t first = pgm_read_byte(&gfxFont->first);
if((c >= first) && (c <= (uint8_t)pgm_read_byte(&gfxFont->last))) {
GFXglyph *glyph = pgm_read_glyph_ptr(gfxFont, c - first);
uint8_t w = pgm_read_byte(&glyph->width),
h = pgm_read_byte(&glyph->height);
if((w > 0) && (h > 0)) { // Is there an associated bitmap?
int16_t xo = (int8_t)pgm_read_byte(&glyph->xOffset); // sic
displayChar(x1, y1+TEXT_LINE_HEIGHT, c, color, background);
checkCAT();
}
x1 += (uint8_t)pgm_read_byte(&glyph->xAdvance);
}
}//end of the while loop of the characters to be printed
}
void setupTouch(){
int x1, y1, x2, y2, x3, y3, x4, y4;
displayClear(DISPLAY_BLACK);
displayText("Click on the cross", 20,100, 200, 50, DISPLAY_WHITE, DISPLAY_BLACK, DISPLAY_BLACK);
// TOP-LEFT
displayHline(10,20,20,DISPLAY_WHITE);
displayVline(20,10,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
while(readTouch())
delay(100);
x1 = ts_point.x;
y1 = ts_point.y;
//rubout the previous one
displayHline(10,20,20,DISPLAY_BLACK);
displayVline(20,10,20, DISPLAY_BLACK);
delay(1000);
//TOP RIGHT
displayHline(290,20,20,DISPLAY_WHITE);
displayVline(300,10,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
while(readTouch())
delay(100);
x2 = ts_point.x;
y2 = ts_point.y;
displayHline(290,20,20,DISPLAY_BLACK);
displayVline(300,10,20, DISPLAY_BLACK);
delay(1000);
//BOTTOM LEFT
displayHline(10,220,20,DISPLAY_WHITE);
displayVline(20,210,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
x3 = ts_point.x;
y3 = ts_point.y;
while(readTouch())
delay(100);
displayHline(10,220,20,DISPLAY_BLACK);
displayVline(20,210,20, DISPLAY_BLACK);
delay(1000);
//BOTTOM RIGHT
displayHline(290,220,20,DISPLAY_WHITE);
displayVline(300,210,20, DISPLAY_WHITE);
while(!readTouch())
delay(100);
x4 = ts_point.x;
y4 = ts_point.y;
displayHline(290,220,20,DISPLAY_BLACK);
displayVline(300,210,20, DISPLAY_BLACK);
// we average two readings and divide them by half and store them as scaled integers 10 times their actual, fractional value
//the x points are located at 20 and 300 on x axis, hence, the delta x is 280, we take 28 instead, to preserve fractional value,
//there are two readings (x1,x2) and (x3, x4). Hence, we have to divide by 28 * 2 = 56
slope_x = ((x4 - x3) + (x2 - x1))/56;
//the y points are located at 20 and 220 on the y axis, hence, the delta is 200. we take it as 20 instead, to preserve the fraction value
//there are two readings (y1, y2) and (y3, y4). Hence we have to divide by 20 * 2 = 40
slope_y = ((y3 - y1) + (y4 - y2))/40;
//x1, y1 is at 20 pixels
offset_x = x1 + -((20 * slope_x)/10);
offset_y = y1 + -((20 * slope_y)/10);
/*
Serial.print(x1);Serial.print(':');Serial.println(y1);
Serial.print(x2);Serial.print(':');Serial.println(y2);
Serial.print(x3);Serial.print(':');Serial.println(y3);
Serial.print(x4);Serial.print(':');Serial.println(y4);
//for debugging
Serial.print(slope_x); Serial.print(' ');
Serial.print(slope_y); Serial.print(' ');
Serial.print(offset_x); Serial.print(' ');
Serial.println(offset_y); Serial.println(' ');
*/
writeTouchCalibration();
displayClear(DISPLAY_BLACK);
}