-
Notifications
You must be signed in to change notification settings - Fork 2
/
r 1.0 model.py
240 lines (190 loc) · 9.52 KB
/
r 1.0 model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
from os.path import join, exists
import time
from pathlib import Path
import numpy as np
import argparse
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn as nn
from utils.constant import *
from utils.transform import scaling, deshape
from sklearn.model_selection import train_test_split
from utils.dataset import load_list_subjects_rp, PreprocessedDataset
from utils.model import get_model
from utils.scheduler import CosineAnnealingWarmUpRestarts
from utils.tools import epoch_time
from utils.tools import get_roc_auc_score
from utils.tools import seed_everything, get_folder
random_seed = 42
seed_everything(random_seed)
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", dest="dataset", action="store", default="GAMEEMO", help='GAMEEMO, SEED, SEED_IV')
parser.add_argument("--label", dest="label", action="store", default="v", help='v, a :GAMEEMO')
parser.add_argument("--model", dest="model", action="store", default="CCNN", help='CCNN, TSC, DGCNN')
parser.add_argument("--feature", dest="feature", action="store", default="DE", help='DE, PSD, raw')
parser.add_argument("--batch", dest="batch", type=int, action="store", default=64)
parser.add_argument("--epoch", dest="epoch", type=int, action="store", default=1)
parser.add_argument("--dropout", dest="dropout", type=float, action="store", default=0, help='0, 0.2, 0.3, 0.5')
parser.add_argument("--sr", dest="sr", type=int, action="store", default=128, help='128, 200') # Sampling Rate
parser.add_argument("--test", dest="test", action="store_true", help='Whether to train data')
parser.add_argument("--z", dest="z", type=float, action="store", default=2.5)
args = parser.parse_args()
DATASET_NAME = args.dataset
LABEL = args.label
MODEL_NAME = args.model
FEATURE = args.feature
BATCH = args.batch
EPOCH = args.epoch
DROPOUT = args.dropout
TEST = args.test
SR = args.sr
Z_THRESHOLD = args.z
PROJECT = f'Base_RP_{int(Z_THRESHOLD*100)}'
if MODEL_NAME == 'CCNN': SHAPE = 'grid'
elif MODEL_NAME == 'TSC': SHAPE = 'expand'; FEATURE = 'raw'
elif MODEL_NAME == 'DGCNN': SHAPE = None
if FEATURE == 'DE': SCALE = None
elif FEATURE == 'PSD': SCALE = 'log'
elif FEATURE == 'raw': SCALE = 'standard'
if LABEL == 'a': train_name = 'arousal'
elif LABEL == 'v': train_name = 'valence'
else: train_name = 'emotion'
if MODEL_NAME == 'TSC': MODEL_FEATURE = MODEL_NAME
else: MODEL_FEATURE = '_'.join([MODEL_NAME, FEATURE])
DATAS, SUB_NUM, CHLS, LOCATION = load_dataset_info(DATASET_NAME)
SUBLIST = [str(i).zfill(2) for i in range(1, SUB_NUM+1)]
DATA = join(DATAS, FEATURE)
train_path = Path(join(os.getcwd(), 'results', DATASET_NAME, MODEL_FEATURE, PROJECT, train_name))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def run_train():
print(f'{DATASET_NAME} {MODEL_NAME} {FEATURE} (shape:{SHAPE},scale:{SCALE}) LABEL:{train_name}')
datas, targets = load_list_subjects_rp(DATA, 'train', SUBLIST, LABEL, z=Z_THRESHOLD)
datas = scaling(datas, scaler_name=SCALE)
datas = deshape(datas, shape_name=SHAPE, chls=CHLS, location=LOCATION)
X_train, X_valid, Y_train, Y_valid = train_test_split(datas, targets, test_size=0.1, stratify=targets, random_state=random_seed)
trainset = PreprocessedDataset(X_train, Y_train)
validset = PreprocessedDataset(X_valid, Y_valid)
print(f'trainset: {trainset.x.shape} \t validset: {validset.x.shape}')
trainloader = DataLoader(trainset, batch_size=BATCH, shuffle=True)
validloader = DataLoader(validset, batch_size=BATCH, shuffle=False)
labels_name = np.unique(validset.y) + 1
model, max_lr = get_model(MODEL_NAME, validset.x.shape, len(labels_name), device, DROPOUT, sampling_rate=SR)
STEP = len(trainloader)
STEPS = EPOCH * STEP
optimizer = optim.Adam(model.parameters(), lr=0, weight_decay=1e-4)
scheduler = CosineAnnealingWarmUpRestarts(optimizer, T_0=STEPS, T_mult=1, eta_max=max_lr, T_up=STEP*3, gamma=0.5)
criterion = nn.CrossEntropyLoss()
criterion = criterion.to(device)
def top_k_accuracy(y_pred, y, k=1):
_, indices = y_pred.topk(k, dim=-1)
correct = indices.eq(y.view(-1, 1))
return correct.any(dim=-1).sum().item() / y.size(0)
def train(model, loader, optimizer, criterion, scheduler, device, scaler):
epoch_loss, epoch_acc_1 = 0, 0
model.train()
for (x, y, subID) in loader:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
with torch.cuda.amp.autocast():
y_pred = model(x)
loss = criterion(y_pred, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
epoch_loss += loss.item()
epoch_acc_1 += top_k_accuracy(y_pred, y, k=1)
lrs.append(optimizer.param_groups[0]['lr'])
scheduler.step()
epoch_loss /= len(loader); epoch_acc_1 /= len(loader)
return epoch_loss, epoch_acc_1
def evaluate(model, loader, criterion, device):
epoch_loss, epoch_acc_1 = 0, 0
model.eval()
with torch.no_grad():
for (x, y, subID) in loader:
x, y = x.to(device), y.to(device)
y_pred = model(x)
loss = criterion(y_pred, y)
epoch_loss += loss.item()
epoch_acc_1 += top_k_accuracy(y_pred, y, k=1)
epoch_loss /= len(loader); epoch_acc_1 /= len(loader)
return epoch_loss, epoch_acc_1
train_path.mkdir(parents=True, exist_ok=True)
with open(join(train_path, 'train.txt'), 'w') as file:
file.write(f'{train_name} {labels_name} train:{tuple(trainset.x.shape)} valid:{tuple(validset.x.shape)}\n'
f'Epoch_{EPOCH}\tTrain_Loss|Acc\tValid_Loss|Acc\n')
lrs = []
train_losses, train_accs, valid_losses, valid_accs = [], [], [], []
best_valid_loss = float('inf')
scaler = torch.cuda.amp.GradScaler()
for epoch in range(EPOCH):
start_time = time.monotonic()
train_loss, train_acc_1 = train(model, trainloader, optimizer, criterion, scheduler, device, scaler)
valid_loss, valid_acc_1 = evaluate(model, validloader, criterion, device)
train_losses.append(train_loss); valid_losses.append(valid_loss)
train_accs.append(train_acc_1); valid_accs.append(valid_acc_1)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), join(train_path,'best.pt'))
end_time = time.monotonic()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
log = (f'{epoch+1:03} {epoch_secs:2d}s\t{train_loss:1.3f}\t{train_acc_1*100:6.2f}%'
f'\t\t{valid_loss:1.3f}\t{valid_acc_1*100:6.2f}%')
file.write(log + '\n')
print(log)
print(f"model weights saved in '{join(train_path,'best.pt')}'")
#--------------------------------------test--------------------------------------------------------
def run_test(train_path):
if not exists(train_path): raise FileNotFoundError(f"File not found: {train_path}, Set the train weight path properly.")
test_path = Path(join(train_path, 'test'))
test_path = get_folder(test_path)
datas, targets = load_list_subjects_rp(DATA, 'test', SUBLIST, LABEL)
datas = scaling(datas, scaler_name=SCALE)
datas = deshape(datas, shape_name=SHAPE, chls=CHLS, location=LOCATION)
testset = PreprocessedDataset(datas, targets)
print(f'testset: {testset.x.shape}')
testloader = DataLoader(testset, batch_size=BATCH, shuffle=False)
labels_name = np.unique(testset.y) + 1
model, _ = get_model(MODEL_NAME, testset.x.shape, len(labels_name), device, DROPOUT, sampling_rate=SR)
model.load_state_dict(torch.load(join(train_path, 'best.pt')))
criterion = nn.CrossEntropyLoss(reduction='none')
criterion = criterion.to(device)
def top_k_accuracy(y_pred, y, k=1):
_, indices = y_pred.topk(k, dim=-1)
correct = indices.eq(y.view(-1, 1))
return correct.any(dim=-1)
def evaluate_test(model, loader, criterion, device):
losss, accs_1 = [], []
labels, preds = [], []
model.eval()
with torch.no_grad():
for (x, y, subID) in loader:
x, y = x.to(device), y.to(device)
y_pred = model(x)
loss = criterion(y_pred, y)
msp = nn.functional.softmax(y_pred, dim=-1)
msp, maxidx = msp.max(1)
accs_1.append(top_k_accuracy(y_pred, y, k=1).cpu())
losss.append(loss.cpu())
labels.append(y.cpu())
preds.append(maxidx.cpu())
accs_1 = torch.cat(accs_1, dim=0)
losss = torch.cat(losss, dim=0)
labels = torch.cat(labels, dim=0)
preds = torch.cat(preds, dim=0)
return losss, accs_1, labels, preds
test_path.mkdir(parents=True, exist_ok=True)
with open(join(test_path, 'output.txt'), 'w') as file:
file.write(f'{train_name} {labels_name} test:{tuple(testset.x.shape)}\n')
losss, accs_1, labels, preds = evaluate_test(model, testloader, criterion, device)
test_loss = torch.mean(losss.float()).item()
test_acc_1 = torch.mean(accs_1.float()).item()
log = f'test_loss: {test_loss:.3f}\ttest_acc: {test_acc_1*100:.2f}%:\t'
log += f'roc_auc_score: {get_roc_auc_score(labels, preds)}\n'
print(log)
print(f'saved in {test_path}')
train_path = get_folder(train_path)
if not TEST: run_train()
run_test(train_path)