diff --git a/probability/variation_dist.v b/probability/variation_dist.v index 7ea25065..eff63800 100644 --- a/probability/variation_dist.v +++ b/probability/variation_dist.v @@ -1,9 +1,8 @@ (* infotheo: information theory and error-correcting codes in Coq *) (* Copyright (C) 2020 infotheo authors, license: LGPL-2.1-or-later *) From mathcomp Require Import all_ssreflect ssralg ssrnum. -Require Import Reals. -From mathcomp Require Import Rstruct. -Require Import ssrR Reals_ext Ranalysis_ext logb fdist ln_facts. +From mathcomp Require Import reals. +Require Import fdist. (******************************************************************************) (* The Variation Distance *) @@ -19,37 +18,38 @@ Set Implicit Arguments. Unset Strict Implicit. Import Prenex Implicits. -Local Open Scope R_scope. +Local Open Scope ring_scope. Local Open Scope fdist_scope. -Import Num.Theory. +Import GRing.Theory Num.Theory. Section variation_distance. +Context {R : realType}. Variable A : finType. -Definition var_dist (P Q : {fdist A}) := \sum_(a : A) `| P a - Q a |. +Definition var_dist (P Q : R.-fdist A) := \sum_(a : A) `| P a - Q a |. Local Notation "'d(' P ',' Q ')' " := (var_dist P Q). Lemma symmetric_var_dist p q : d(p , q) = d(q , p). -Proof. rewrite /var_dist; apply eq_bigr => ? _; by rewrite distRC. Qed. +Proof. rewrite /var_dist; apply eq_bigr => ? _; by rewrite distrC. Qed. Lemma pos_var_dist p q : 0 <= d(p , q). -Proof. by apply/RleP/sumr_ge0 => ? _; apply/RleP/normR_ge0. Qed. +Proof. by apply/sumr_ge0 => ? _; apply/normr_ge0. Qed. Lemma def_var_dist p q : d( p , q) = 0 -> p = q. Proof. rewrite /var_dist => H; apply/fdist_ext => a. -rewrite -subR_eq0; apply/normR0_eq0; move: H. -rewrite (bigD1 a) //= paddR_eq0 => [[] // | | ]; first exact/normR_ge0. -by apply/RleP/sumr_ge0 => ? _; apply/RleP/normR_ge0. +apply/eqP; rewrite -subr_eq0; apply/eqP/normr0_eq0; move: H. +move/eqP; rewrite (bigD1 a) //= paddr_eq0 //; first by case/andP=> /eqP->. +by apply/sumr_ge0 => ? _; apply/normr_ge0. Qed. -Lemma leq_var_dist (p q : {fdist A}) x : `| p x - q x | <= d( p , q ). +Lemma leq_var_dist (p q : R.-fdist A) x : `| p x - q x | <= d( p , q ). Proof. -rewrite /var_dist (bigD1 x) //= -{1}(addR0 `| p x - q x |). -by apply/leR_add2l/RleP/sumr_ge0 => ? _; apply/RleP/normR_ge0. +rewrite /var_dist (bigD1 x) //= -{1}(addr0 `| p x - q x |). +by rewrite lerD2l sumr_ge0. Qed. End variation_distance.