Skip to content

Latest commit

 

History

History
41 lines (31 loc) · 2.48 KB

File metadata and controls

41 lines (31 loc) · 2.48 KB

Retaining-Succsess-Churn-Analysis

Power Bi PostgreSQL Canva PPT MS OFFICE EXCEL GOOGLE SHEETS VSCODE FIGMA PREZI SQL Server GITHUB ACTIONS WINDOWS TERMINAL

Context :

  1. Implementing the Decision Tree algorithm to predict churn.
  2. Implementing the Random Forest algorithm to predict churn.

Model :

  1. Random Forest
  2. Decision Tree

Business Matrics :

  1. Customer Churn
  2. Customer Lifetime Value (CLV)

Digital Asset