-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_solver.py
381 lines (321 loc) · 15.6 KB
/
sudoku_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
Author: Mohamed Afify
Date: May 2020
Overview:
- The Sudoku class contains all the information about the sudoku and the methods
needed for the algorithm
- It would be hard to explain everything in this file, but it shouldn't be hard
if you have read and understood the solve.py file
"""
def get_column(matrix, i):
return [row[i] for row in matrix]
class Sudoku:
def __init__(self, grid, ordinaryGrid):
self.grid = grid
self.ordinaryGrid = ordinaryGrid
self.notes = []
self.added = 0
self.solved = False
empty_cells = []
for row in range(0, 9):
for col in range(0, 9):
if self.ordinaryGrid[row][col] == 0:
empty_cells.append([row, col])
self.emptyCells = empty_cells
def __repr__(self):
print(self.grid)
print(self.notes)
print(self.added)
##########################################################################################
# ------------------------------Adding Numbers and Updating Blocks------------------------
##########################################################################################
def add_num_in_blk(self, number, block, row, column):
self.grid[block][row][column] = number
self.added += 1
self.update_ord_grid(self.grid)
if len(self.emptyCells) == self.added:
self.solved = True
def add_num_in_ord(self, number, row, column):
self.ordinaryGrid[row][column] = number
self.added += 1
self.update_blk_grid(self.ordinaryGrid)
if len(self.emptyCells) == self.added:
self.solved = True
def update_ord_grid(self, blk_grid):
# Updates the block grid using the ordinary grid
self.ordinaryGrid = [blk_grid[0][0] + blk_grid[1][0] + blk_grid[2][0],
blk_grid[0][1] + blk_grid[1][1] + blk_grid[2][1],
blk_grid[0][2] + blk_grid[1][2] + blk_grid[2][2],
blk_grid[3][0] + blk_grid[4][0] + blk_grid[5][0],
blk_grid[3][1] + blk_grid[4][1] + blk_grid[5][1],
blk_grid[3][2] + blk_grid[4][2] + blk_grid[5][2],
blk_grid[6][0] + blk_grid[7][0] + blk_grid[8][0],
blk_grid[6][1] + blk_grid[7][1] + blk_grid[8][1],
blk_grid[6][2] + blk_grid[7][2] + blk_grid[8][2]]
def update_blk_grid(self, ord_grid):
# Updates the ordinary grid using the block grid
self.grid = [[ord_grid[0][0:3], ord_grid[1][0:3], ord_grid[2][0:3]],
[ord_grid[0][3:6], ord_grid[1][3:6], ord_grid[2][3:6]],
[ord_grid[0][6:9], ord_grid[1][6:9], ord_grid[2][6:9]],
[ord_grid[3][0:3], ord_grid[4][0:3], ord_grid[5][0:3]],
[ord_grid[3][3:6], ord_grid[4][3:6], ord_grid[5][3:6]],
[ord_grid[3][6:9], ord_grid[4][6:9], ord_grid[5][6:9]],
[ord_grid[6][0:3], ord_grid[7][0:3], ord_grid[8][0:3]],
[ord_grid[6][3:6], ord_grid[7][3:6], ord_grid[8][3:6]],
[ord_grid[6][6:9], ord_grid[7][6:9], ord_grid[8][6:9]]]
##########################################################################################
# ------------------------------By block Solving------------------------
##########################################################################################
def find_num_blk_instances(self, number):
locations = []
for block in range(0, 9):
for row in range(0, 3):
for column in range(0, 3):
if self.grid[block][row][column] == number:
locations.append([block, row, column])
return locations
@staticmethod
def find_valid_blocks_for_num(instances):
invalid_blocks = []
valid_blocks = []
for location in instances:
invalid_blocks.append(location[0])
for block in range(0, 9):
if block not in invalid_blocks:
valid_blocks.append(block)
return valid_blocks
def find_free_cells_in_blk(self, block): # returns [row, column] for free cells in the current block
free_cells = []
for row in range(0, 3):
for column in range(0, 3):
if self.grid[block][row][column] == 0:
free_cells.append([row, column])
return free_cells
def find_invalid_rows_in_blk_for_num(self, number, block, instances):
# Returns 0 or 1 or 2 or a combination
rows = []
def_block = block
if block in [0, 1, 2]:
block = 0
elif block in [3, 4, 5]:
block = 3
elif block in [6, 7, 8]:
block = 6
row_blocks = [block, block + 1, block + 2]
for instance in instances:
if instance[0] in row_blocks:
rows.append(instance[1])
# Taking Row Notes into account
row_blocks.remove(def_block)
for i in range(len(self.notes) - 1):
if [self.notes[i][0], self.notes[i][1]] == [number, row_blocks[0]] or [self.notes[i][0],
self.notes[i][1]] == [number,
row_blocks[1]]:
if self.notes[i][0] == self.notes[i + 1][0] and self.notes[i][1] and self.notes[i + 1][1] and \
self.notes[i][2] == self.notes[i + 1][2] and self.notes[i][3] not in rows:
rows.append(self.notes[i][2])
break
return rows
def find_invalid_cols_in_blk_for_num(self, number, block, instances):
columns = []
def_block = block
if block in [0, 3, 6]:
block = 0
elif block in [1, 4, 7]:
block = 1
elif block in [2, 5, 8]:
block = 2
column_blocks = [block, block + 3, block + 6]
for instance in instances:
if instance[0] in column_blocks:
columns.append(instance[2])
# Taking Column Notes into account
column_blocks.remove(def_block)
for i in range(len(self.notes) - 1):
if [self.notes[i][0], self.notes[i][1]] == [number, column_blocks[0]] or \
[self.notes[i][0], self.notes[i][1]] == [number, column_blocks[1]]:
if self.notes[i][0] == self.notes[i + 1][0] and self.notes[i][1] and self.notes[i + 1][1] and \
self.notes[i][3] == self.notes[i + 1][3] and self.notes[i][3] not in columns:
columns.append(self.notes[i][3])
break
return columns
def find_valid_cells_in_blk_for_num(self, number, block, instances):
invalid_rows = self.find_invalid_rows_in_blk_for_num(number, block, instances)
invalid_cols = self.find_invalid_cols_in_blk_for_num(number, block, instances)
free_cells = self.find_free_cells_in_blk(block)
valid_cells = []
for row in range(3):
for col in range(3):
if row not in invalid_rows and col not in invalid_cols and [row, col] in free_cells:
valid_cells.append([row, col])
return valid_cells
def add_note_or_num(self, number, block, valid_cells):
# Adds a note or inserts a missing number
# Adds a note if the number of valid cells in this block for a certain number is 2
# Inserts a number otherwise, and also removes notes related to that number in self.notes
if len(valid_cells) == 1:
for note in self.notes:
if [note[0], note[1]] == [number, block]:
self.notes.remove(note)
# repeat the operation because notes are added in twos
for note in self.notes:
if [note[0], note[1]] == [number, block]:
self.notes.remove(note)
self.add_num_in_blk(number, block, valid_cells[0][0], valid_cells[0][1])
# Only adds a note if the number of valid cells is two, and also if both notes have
# the same row or the same column.
elif len(valid_cells) == 2:
note1 = [number, block, valid_cells[0][0], valid_cells[0][1]]
note2 = [number, block, valid_cells[1][0], valid_cells[1][1]]
if note1 not in self.notes and note2 not in self.notes and (
valid_cells[0][0] == valid_cells[1][0] or valid_cells[0][1] == valid_cells[1][1]):
self.notes.append([number, block, valid_cells[0][0], valid_cells[0][1]])
self.notes.append([number, block, valid_cells[1][0], valid_cells[1][1]])
##########################################################################################
# ------------------------------Solving using rows and columns (Simple)-------------------
##########################################################################################
def solve_by_row(self):
# Solving the sudoku using the row rule
# By looking for rows having a single empty slot (0) and replacing it with the missing number
# input: ordinary grid (9x9) >>> output: inserting missing number
for row in range(0, 9):
numbers_in_row = self.ordinaryGrid[row]
if numbers_in_row.count(0) == 1:
k = numbers_in_row.index(0)
for number in range(1, 10):
if number not in numbers_in_row:
self.add_num_in_ord(number, row, k)
def solve_by_col(self):
# Solving the sudoku using the column rule
# By looking for columns having a single empty slot (0) and replacing it with the missing number
# input: ordinary grid (9x9) >>> output: inserting missing number
ord_grid_t = [list(x) for x in zip(*self.ordinaryGrid)] # Getting the transpose to make the algorithm easier
for col in range(0, 9):
numbers_in_col = ord_grid_t[col]
if numbers_in_col.count(0) == 1:
for number in range(1, 10):
if number not in numbers_in_col:
self.add_num_in_ord(number, numbers_in_col.index(0), col)
##########################################################################################
# ------------------------------Solving by rows and columns (complex)---------------------
##########################################################################################
def find_ord_instances_for_num(self, number):
locations = []
for row in range(0, 9):
for col in range(0, 9):
if self.ordinaryGrid[row][col] == number:
locations.append([row, col])
return locations
@staticmethod
def find_valid_rows_for_num(ord_instances):
invalid_rows = []
valid_rows = []
for location in ord_instances:
invalid_rows.append(location[0])
for row in range(0, 9):
if row not in invalid_rows:
valid_rows.append(row)
return valid_rows
@staticmethod
def find_valid_cols_for_num(ord_instances):
invalid_cols = []
valid_cols = []
for location in ord_instances:
invalid_cols.append(location[1])
for col in range(0, 9):
if col not in invalid_cols:
valid_cols.append(col)
return valid_cols
def find_free_cells_in_row(self, row):
row_free_cells = []
for col in range(0, 9):
if self.ordinaryGrid[row][col] == 0:
row_free_cells.append(col)
return row_free_cells
def find_free_cells_in_col(self, col):
col_free_cells = []
for row in range(0, 9):
if get_column(self.ordinaryGrid, col)[row] == 0:
col_free_cells.append(row)
return col_free_cells
def find_valid_cells_in_row(self, row, ord_instances):
valid_cols = self.find_valid_cols_for_num(ord_instances)
row_valid_cells = []
row_free_cells = self.find_free_cells_in_row(row)
for row_cell in row_free_cells:
if row_cell in valid_cols:
row_valid_cells.append(row_cell)
return row_valid_cells
def find_valid_cells_in_col(self, col, ord_instances):
valid_rows = self.find_valid_rows_for_num(ord_instances)
col_valid_cells = []
col_free_cells = self.find_free_cells_in_col(col) # Correct
for col_cell in col_free_cells:
if col_cell in valid_rows:
col_valid_cells.append(col_cell)
return col_valid_cells
def add_to_row(self, number, row, row_valid_cells):
if len(row_valid_cells) == 1:
self.add_num_in_ord(number, row, row_valid_cells[0])
def add_to_col(self, number, col, col_valid_cells):
if len(col_valid_cells) == 1:
self.add_num_in_ord(number, col_valid_cells[0], col)
##########################################################################################
# ------------------------------Solving by Cell-------------------------
##########################################################################################
def solve_by_cell_in_row(self, row):
empty_cells = []
for cell in range(0, 9):
if self.ordinaryGrid[row][cell] == 0:
empty_cells.append(cell)
missing_numbers = self.get_missing_numbers_row(row)
k = 0
missings = []
if len(missing_numbers) == 3:
for cell in empty_cells:
if k == 1:
break
for num in missing_numbers:
for i in range(3):
missings.append(missing_numbers[i])
missings.remove(num)
instances1 = self.find_ord_instances_for_num(missings[0])
instances2 = self.find_ord_instances_for_num(missings[1])
if cell in get_column(instances1, 1) and cell in get_column(instances2, 1):
self.add_num_in_ord(num, row, cell)
k = 1
break
def solve_by_cell_in_col(self, col):
empty_cells = []
for cell in range(0, 9):
if self.ordinaryGrid[cell][col] == 0:
empty_cells.append(cell)
missing_numbers = self.get_missing_numbers_col(col)
k = 0
missings = []
if len(missing_numbers) == 3:
for cell in empty_cells:
if k == 1:
break
for num in missing_numbers:
for i in range(3):
missings.append(missing_numbers[i])
missings.remove(num)
instances1 = self.find_ord_instances_for_num(missings[0])
instances2 = self.find_ord_instances_for_num(missings[1])
if cell in get_column(instances1, 0) and cell in get_column(instances2, 0):
self.add_num_in_ord(num, cell, col)
k = 1
break
def get_missing_numbers_col(self, col):
missing_numbers = []
for num in range(1, 10):
if num not in get_column(self.ordinaryGrid, col):
missing_numbers.append(num)
return missing_numbers
def get_missing_numbers_row(self, row):
missing_numbers = []
for num in range(1, 10):
if num not in self.ordinaryGrid[row]:
missing_numbers.append(num)
return missing_numbers