-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIPDmodeling.py
53 lines (52 loc) · 1.46 KB
/
IPDmodeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
def av_return(policy1,policy2,r1arr = [-1,-3,0,-2],r2arr = [-1,0,-3,-2],rollout_length=1000,num_rollout=100,gamma=0.96):
policy1 = policy1.data.cpu().numpy().tolist()
policy2 = policy2.data.cpu().numpy().tolist()
reward = []
p1C = [0,0,0,0,0]
p1Total = [0,0,0,0,0]
p2C = [0,0,0,0,0]
p2Total = [0,0,0,0,0]
for _ in range(num_rollout):
s = [0,0]
s[0] = np.random.choice([0,1],p = [policy1[0][0],1-policy1[0][0]]) # 0 means Cooperate, 1 means Defect
s[1] = np.random.choice([0,1],p = [policy2[0][0],1-policy2[0][0]])
p1Total[0]+=1
p2Total[0]+=1
if s[0]==0:
p1C[0] += 1
if s[1]==0:
p2C[0] += 1
r1 = 0
r2 = 0
for i in range(rollout_length):
if s[0]==0 and s[1]==0:
a = 1
elif s[0]==0 and s[1]==1:
a = 2
elif s[0]==1 and s[1]==0:
a = 3
else:
a = 4
#r1 = r1 + r1arr[a-1]
#r2 = r2 + r2arr[a-1]
s[0] = np.random.choice([0,1],p = [policy1[a][0],1-policy1[a][0]])
s[1] = np.random.choice([0,1],p = [policy2[a][0],1-policy2[a][0]])
#print(s)
p1Total[a]+=1
p2Total[a]+=1
if s[0]==0:
p1C[a]+=1
if s[1]==0:
p2C[a]+=1
#r1 = r1/rollout_length
#r2 = r2/rollout_length
#reward.append([r1,r2])
#reward = np.asarray(reward)
#r1 = np.mean(reward[:,0])
#r2 = np.mean(reward[:,1])
pm1 = np.asarray(p1C)/np.asarray(p1Total)
pm2 = np.asarray(p2C)/np.asarray(p2Total)
pm1_y = np.log(np.divide(pm1,1-pm1))
pm2_y = np.log(np.divide(pm2,1-pm2))
return pm1_y.reshape((5,1)),pm2_y.reshape((5,1))