forked from disintegration/imaging
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresize.go
597 lines (520 loc) · 13.8 KB
/
resize.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
package imaging
import (
"image"
"math"
)
type indexWeight struct {
index int
weight float64
}
func precomputeWeights(dstSize, srcSize int, filter ResampleFilter) [][]indexWeight {
du := float64(srcSize) / float64(dstSize)
scale := du
if scale < 1.0 {
scale = 1.0
}
ru := math.Ceil(scale * filter.Support)
out := make([][]indexWeight, dstSize)
tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2)
for v := 0; v < dstSize; v++ {
fu := (float64(v)+0.5)*du - 0.5
begin := int(math.Ceil(fu - ru))
if begin < 0 {
begin = 0
}
end := int(math.Floor(fu + ru))
if end > srcSize-1 {
end = srcSize - 1
}
var sum float64
for u := begin; u <= end; u++ {
w := filter.Kernel((float64(u) - fu) / scale)
if w != 0 {
sum += w
tmp = append(tmp, indexWeight{index: u, weight: w})
}
}
if sum != 0 {
for i := range tmp {
tmp[i].weight /= sum
}
}
out[v] = tmp
tmp = tmp[len(tmp):]
}
return out
}
// Resize resizes the image to the specified width and height using the specified resampling
// filter and returns the transformed image. If one of width or height is 0, the image aspect
// ratio is preserved.
//
// Example:
//
// dstImage := imaging.Resize(srcImage, 800, 600, imaging.Lanczos)
//
func Resize(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
dstW, dstH := width, height
if dstW < 0 || dstH < 0 {
return &image.NRGBA{}
}
if dstW == 0 && dstH == 0 {
return &image.NRGBA{}
}
srcW := img.Bounds().Dx()
srcH := img.Bounds().Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
// If new width or height is 0 then preserve aspect ratio, minimum 1px.
if dstW == 0 {
tmpW := float64(dstH) * float64(srcW) / float64(srcH)
dstW = int(math.Max(1.0, math.Floor(tmpW+0.5)))
}
if dstH == 0 {
tmpH := float64(dstW) * float64(srcH) / float64(srcW)
dstH = int(math.Max(1.0, math.Floor(tmpH+0.5)))
}
if srcW == dstW && srcH == dstH {
return Clone(img)
}
if filter.Support <= 0 {
// Nearest-neighbor special case.
return resizeNearest(img, dstW, dstH)
}
if srcW != dstW && srcH != dstH {
return resizeVertical(resizeHorizontal(img, dstW, filter), dstH, filter)
}
if srcW != dstW {
return resizeHorizontal(img, dstW, filter)
}
return resizeVertical(img, dstH, filter)
}
func resizeHorizontal(img image.Image, width int, filter ResampleFilter) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, width, src.h))
weights := precomputeWeights(width, src.w, filter)
parallel(0, src.h, func(ys <-chan int) {
scanLine := make([]uint8, src.w*4)
for y := range ys {
src.scan(0, y, src.w, y+1, scanLine)
j0 := y * dst.Stride
for x := range weights {
var r, g, b, a float64
for _, w := range weights[x] {
i := w.index * 4
s := scanLine[i : i+4 : i+4]
aw := float64(s[3]) * w.weight
r += float64(s[0]) * aw
g += float64(s[1]) * aw
b += float64(s[2]) * aw
a += aw
}
if a != 0 {
aInv := 1 / a
j := j0 + x*4
d := dst.Pix[j : j+4 : j+4]
d[0] = clamp(r * aInv)
d[1] = clamp(g * aInv)
d[2] = clamp(b * aInv)
d[3] = clamp(a)
}
}
}
})
return dst
}
func resizeVertical(img image.Image, height int, filter ResampleFilter) *image.NRGBA {
src := newScanner(img)
dst := image.NewNRGBA(image.Rect(0, 0, src.w, height))
weights := precomputeWeights(height, src.h, filter)
parallel(0, src.w, func(xs <-chan int) {
scanLine := make([]uint8, src.h*4)
for x := range xs {
src.scan(x, 0, x+1, src.h, scanLine)
for y := range weights {
var r, g, b, a float64
for _, w := range weights[y] {
i := w.index * 4
s := scanLine[i : i+4 : i+4]
aw := float64(s[3]) * w.weight
r += float64(s[0]) * aw
g += float64(s[1]) * aw
b += float64(s[2]) * aw
a += aw
}
if a != 0 {
aInv := 1 / a
j := y*dst.Stride + x*4
d := dst.Pix[j : j+4 : j+4]
d[0] = clamp(r * aInv)
d[1] = clamp(g * aInv)
d[2] = clamp(b * aInv)
d[3] = clamp(a)
}
}
}
})
return dst
}
// resizeNearest is a fast nearest-neighbor resize, no filtering.
func resizeNearest(img image.Image, width, height int) *image.NRGBA {
dst := image.NewNRGBA(image.Rect(0, 0, width, height))
dx := float64(img.Bounds().Dx()) / float64(width)
dy := float64(img.Bounds().Dy()) / float64(height)
if dx > 1 && dy > 1 {
src := newScanner(img)
parallel(0, height, func(ys <-chan int) {
for y := range ys {
srcY := int((float64(y) + 0.5) * dy)
dstOff := y * dst.Stride
for x := 0; x < width; x++ {
srcX := int((float64(x) + 0.5) * dx)
src.scan(srcX, srcY, srcX+1, srcY+1, dst.Pix[dstOff:dstOff+4])
dstOff += 4
}
}
})
} else {
src := toNRGBA(img)
parallel(0, height, func(ys <-chan int) {
for y := range ys {
srcY := int((float64(y) + 0.5) * dy)
srcOff0 := srcY * src.Stride
dstOff := y * dst.Stride
for x := 0; x < width; x++ {
srcX := int((float64(x) + 0.5) * dx)
srcOff := srcOff0 + srcX*4
copy(dst.Pix[dstOff:dstOff+4], src.Pix[srcOff:srcOff+4])
dstOff += 4
}
}
})
}
return dst
}
// Fit scales down the image using the specified resample filter to fit the specified
// maximum width and height and returns the transformed image.
//
// Example:
//
// dstImage := imaging.Fit(srcImage, 800, 600, imaging.Lanczos)
//
func Fit(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
maxW, maxH := width, height
if maxW <= 0 || maxH <= 0 {
return &image.NRGBA{}
}
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
if srcW <= maxW && srcH <= maxH {
return Clone(img)
}
srcAspectRatio := float64(srcW) / float64(srcH)
maxAspectRatio := float64(maxW) / float64(maxH)
var newW, newH int
if srcAspectRatio > maxAspectRatio {
newW = maxW
newH = int(float64(newW) / srcAspectRatio)
} else {
newH = maxH
newW = int(float64(newH) * srcAspectRatio)
}
return Resize(img, newW, newH, filter)
}
// Fill creates an image with the specified dimensions and fills it with the scaled source image.
// To achieve the correct aspect ratio without stretching, the source image will be cropped.
//
// Example:
//
// dstImage := imaging.Fill(srcImage, 800, 600, imaging.Center, imaging.Lanczos)
//
func Fill(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
dstW, dstH := width, height
if dstW <= 0 || dstH <= 0 {
return &image.NRGBA{}
}
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
if srcW <= 0 || srcH <= 0 {
return &image.NRGBA{}
}
if srcW == dstW && srcH == dstH {
return Clone(img)
}
if srcW >= 100 && srcH >= 100 {
return cropAndResize(img, dstW, dstH, anchor, filter)
}
return resizeAndCrop(img, dstW, dstH, anchor, filter)
}
// cropAndResize crops the image to the smallest possible size that has the required aspect ratio using
// the given anchor point, then scales it to the specified dimensions and returns the transformed image.
//
// This is generally faster than resizing first, but may result in inaccuracies when used on small source images.
func cropAndResize(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
dstW, dstH := width, height
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
srcAspectRatio := float64(srcW) / float64(srcH)
dstAspectRatio := float64(dstW) / float64(dstH)
var tmp *image.NRGBA
if srcAspectRatio < dstAspectRatio {
cropH := float64(srcW) * float64(dstH) / float64(dstW)
tmp = CropAnchor(img, srcW, int(math.Max(1, cropH)+0.5), anchor)
} else {
cropW := float64(srcH) * float64(dstW) / float64(dstH)
tmp = CropAnchor(img, int(math.Max(1, cropW)+0.5), srcH, anchor)
}
return Resize(tmp, dstW, dstH, filter)
}
// resizeAndCrop resizes the image to the smallest possible size that will cover the specified dimensions,
// crops the resized image to the specified dimensions using the given anchor point and returns
// the transformed image.
func resizeAndCrop(img image.Image, width, height int, anchor Anchor, filter ResampleFilter) *image.NRGBA {
dstW, dstH := width, height
srcBounds := img.Bounds()
srcW := srcBounds.Dx()
srcH := srcBounds.Dy()
srcAspectRatio := float64(srcW) / float64(srcH)
dstAspectRatio := float64(dstW) / float64(dstH)
var tmp *image.NRGBA
if srcAspectRatio < dstAspectRatio {
tmp = Resize(img, dstW, 0, filter)
} else {
tmp = Resize(img, 0, dstH, filter)
}
return CropAnchor(tmp, dstW, dstH, anchor)
}
// Thumbnail scales the image up or down using the specified resample filter, crops it
// to the specified width and hight and returns the transformed image.
//
// Example:
//
// dstImage := imaging.Thumbnail(srcImage, 100, 100, imaging.Lanczos)
//
func Thumbnail(img image.Image, width, height int, filter ResampleFilter) *image.NRGBA {
return Fill(img, width, height, Center, filter)
}
// ResampleFilter specifies a resampling filter to be used for image resizing.
//
// General filter recommendations:
//
// - Lanczos
// A high-quality resampling filter for photographic images yielding sharp results.
//
// - CatmullRom
// A sharp cubic filter that is faster than Lanczos filter while providing similar results.
//
// - MitchellNetravali
// A cubic filter that produces smoother results with less ringing artifacts than CatmullRom.
//
// - Linear
// Bilinear resampling filter, produces a smooth output. Faster than cubic filters.
//
// - Box
// Simple and fast averaging filter appropriate for downscaling.
// When upscaling it's similar to NearestNeighbor.
//
// - NearestNeighbor
// Fastest resampling filter, no antialiasing.
//
type ResampleFilter struct {
Support float64
Kernel func(float64) float64
}
// NearestNeighbor is a nearest-neighbor filter (no anti-aliasing).
var NearestNeighbor ResampleFilter
// Box filter (averaging pixels).
var Box ResampleFilter
// Linear filter.
var Linear ResampleFilter
// Hermite cubic spline filter (BC-spline; B=0; C=0).
var Hermite ResampleFilter
// MitchellNetravali is Mitchell-Netravali cubic filter (BC-spline; B=1/3; C=1/3).
var MitchellNetravali ResampleFilter
// CatmullRom is a Catmull-Rom - sharp cubic filter (BC-spline; B=0; C=0.5).
var CatmullRom ResampleFilter
// BSpline is a smooth cubic filter (BC-spline; B=1; C=0).
var BSpline ResampleFilter
// Gaussian is a Gaussian blurring filter.
var Gaussian ResampleFilter
// Bartlett is a Bartlett-windowed sinc filter (3 lobes).
var Bartlett ResampleFilter
// Lanczos filter (3 lobes).
var Lanczos ResampleFilter
// Hann is a Hann-windowed sinc filter (3 lobes).
var Hann ResampleFilter
// Hamming is a Hamming-windowed sinc filter (3 lobes).
var Hamming ResampleFilter
// Blackman is a Blackman-windowed sinc filter (3 lobes).
var Blackman ResampleFilter
// Welch is a Welch-windowed sinc filter (parabolic window, 3 lobes).
var Welch ResampleFilter
// Cosine is a Cosine-windowed sinc filter (3 lobes).
var Cosine ResampleFilter
func bcspline(x, b, c float64) float64 {
var y float64
x = math.Abs(x)
if x < 1.0 {
y = ((12-9*b-6*c)*x*x*x + (-18+12*b+6*c)*x*x + (6 - 2*b)) / 6
} else if x < 2.0 {
y = ((-b-6*c)*x*x*x + (6*b+30*c)*x*x + (-12*b-48*c)*x + (8*b + 24*c)) / 6
}
return y
}
func sinc(x float64) float64 {
if x == 0 {
return 1
}
return math.Sin(math.Pi*x) / (math.Pi * x)
}
func init() {
NearestNeighbor = ResampleFilter{
Support: 0.0, // special case - not applying the filter
}
Box = ResampleFilter{
Support: 0.5,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x <= 0.5 {
return 1.0
}
return 0
},
}
Linear = ResampleFilter{
Support: 1.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return 1.0 - x
}
return 0
},
}
Hermite = ResampleFilter{
Support: 1.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 1.0 {
return bcspline(x, 0.0, 0.0)
}
return 0
},
}
MitchellNetravali = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 1.0/3.0, 1.0/3.0)
}
return 0
},
}
CatmullRom = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 0.0, 0.5)
}
return 0
},
}
BSpline = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return bcspline(x, 1.0, 0.0)
}
return 0
},
}
Gaussian = ResampleFilter{
Support: 2.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 2.0 {
return math.Exp(-2 * x * x)
}
return 0
},
}
Bartlett = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (3.0 - x) / 3.0
}
return 0
},
}
Lanczos = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * sinc(x/3.0)
}
return 0
},
}
Hann = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.5 + 0.5*math.Cos(math.Pi*x/3.0))
}
return 0
},
}
Hamming = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.54 + 0.46*math.Cos(math.Pi*x/3.0))
}
return 0
},
}
Blackman = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (0.42 - 0.5*math.Cos(math.Pi*x/3.0+math.Pi) + 0.08*math.Cos(2.0*math.Pi*x/3.0))
}
return 0
},
}
Welch = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * (1.0 - (x * x / 9.0))
}
return 0
},
}
Cosine = ResampleFilter{
Support: 3.0,
Kernel: func(x float64) float64 {
x = math.Abs(x)
if x < 3.0 {
return sinc(x) * math.Cos((math.Pi/2.0)*(x/3.0))
}
return 0
},
}
}