-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDQN.py
262 lines (218 loc) · 11 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# DQN
import random
import numpy as np
import cv2
import PIL
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, Dense, Lambda, Flatten, Input, average, Add
from keras.backend import repeat_elements
from keras.optimizers import Adam
import keras
import tensorflow as tf
from collections import deque
class DQNAgent:
def __init__(self, inp_action_size):
self.action_size = inp_action_size
self.name="DDDQN"
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 0.6
self.epsilon_decay = 0.98
self.epsilon_min = 0.01
self.learning_rate = 0.0005
self.tau = 200
self.tau_counter = 0
self.DQNetwork = self._build_model(self.name+"-l")
self.TargetNetwork = self._build_model(self.name+"-t")
self.sync_networks(0)
# self.model = self._build_model()
self.store_list = []
def _build_model(self,name, input_shape=(460, 460, 1)):
h, w, d=input_shape
# Constructing a Duelling Deep Q-Network
# model = Sequential()
# model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=input_shape, output_shape=input_shape))
# model.add(Conv2D(32, (3, 3), activation='relu', name='conv1', input_shape=input_shape, padding='same'))
# model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Conv2D(64, (4, 4), activation='relu', name='conv2', padding='same', strides=(2, 2)))
# model.add(MaxPooling2D(pool_size=(2, 2)))
# model.add(Flatten())
# model.add(Dense(256, activation='relu'))
# model.add(Dense(2, activation='linear'))
# inputs = Input(shape=input_shape)
# x = Lambda(lambda x: x / 127.5 - 1, input_shape=input_shape, output_shape=input_shape)(inputs)
# x = Conv2D(32, (3, 3), activation='relu', name='conv1', padding='same', input_shape=input_shape)(x)
# x = MaxPooling2D(pool_size=(2, 2))(x)
# x = Conv2D(64, (4, 4), activation='relu', name='conv2', padding='same')(x)
# x = MaxPooling2D(pool_size=(2, 2))(x)
# x = Flatten()(x)
#
# value = Dense(1, activation='relu')(x)
# action_advantage = Dense(self.action_size, activation='relu')(x)
# added=keras.layers.add([action_advantage, action_advantage])
# # averaged=keras.layers.average([action_advantage, action_advantage])
# # multiplied=repeat_elements(value, self.action_size, 0)
# average_action_advantage = keras.backend.mean(action_advantage, axis=[-1], keepdims=True)
# keras.layers.average(action_advantage)
# # k=repeat_elements(value, self.action_size, -1)
# # Q_values = Add()([repeat_elements(value, self.action_size, -1), average_action_advantage])
#
# model = Model(inputs, average_action_advantage)
# model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
#
# model.summary()
#
# return model
# We use tf.variable_scope here to know which network we're using (DQN or target_net)
# it will be useful when we will update our w- parameters (by copy the DQN parameters)
with tf.variable_scope(name):
# We create the placeholders
# *state_size means that we take each elements of state_size in tuple hence is like if we wrote
# [None, 100, 120, 4]
self.inputs_ = tf.placeholder(tf.float32, [None, h,w,d], name="inputs")
#
self.ISWeights_ = tf.placeholder(tf.float32, [None, 1], name='IS_weights')
self.actions_ = tf.placeholder(tf.float32, [None, self.action_size], name="actions_")
# Remember that target_Q is the R(s,a) + ymax Qhat(s', a')
self.target_Q = tf.placeholder(tf.float32, [None], name="target")
"""
First convnet:
CNN
ELU
"""
# Input is 100x120x4
self.conv1 = tf.layers.conv2d(inputs=self.inputs_,
filters=32,
kernel_size=[8, 8],
strides=[4, 4],
padding="VALID",
kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
name="conv1")
self.conv1_out = tf.nn.elu(self.conv1, name="conv1_out")
"""
Second convnet:
CNN
ELU
"""
self.conv2 = tf.layers.conv2d(inputs=self.conv1_out,
filters=64,
kernel_size=[4, 4],
strides=[2, 2],
padding="VALID",
kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
name="conv2")
self.conv2_out = tf.nn.elu(self.conv2, name="conv2_out")
"""
Third convnet:
CNN
ELU
"""
self.conv3 = tf.layers.conv2d(inputs=self.conv2_out,
filters=128,
kernel_size=[4, 4],
strides=[2, 2],
padding="VALID",
kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
name="conv3")
self.conv3_out = tf.nn.elu(self.conv3, name="conv3_out")
self.flatten = tf.layers.flatten(self.conv3_out)
## Here we separate into two streams
# The one that calculate V(s)
self.value_fc = tf.layers.dense(inputs=self.flatten,
units=512,
activation=tf.nn.elu,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
name="value_fc")
self.value = tf.layers.dense(inputs=self.value_fc,
units=1,
activation=None,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
name="value")
# The one that calculate A(s,a)
self.advantage_fc = tf.layers.dense(inputs=self.flatten,
units=512,
activation=tf.nn.elu,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
name="advantage_fc")
self.advantage = tf.layers.dense(inputs=self.advantage_fc,
units=self.action_size,
activation=None,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
name="advantages")
# Agregating layer
# Q(s,a) = V(s) + (A(s,a) - 1/|A| * sum A(s,a'))
self.output = self.value + tf.subtract(self.advantage,
tf.reduce_mean(self.advantage, axis=1, keepdims=True))
# Q is our predicted Q value.
self.Q = tf.reduce_sum(tf.multiply(self.output, self.actions_), axis=1)
# The loss is modified because of PER
self.absolute_errors = tf.abs(self.target_Q - self.Q) # for updating Sumtree
self.loss = tf.reduce_mean(self.ISWeights_ * tf.squared_difference(self.target_Q, self.Q))
self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss)
return tf.get_default_graph()
# The weights from the target network are updated to the DQN-weights
def sync_networks(self, sync_num):
name = "Models/model_sync_{}.h5".format(sync_num)
self.save(name, self.DQNetwork)
self.load(name, self.TargetNetwork)
def pre_process(self, image):
image = np.array(image)
# print('image', image)
gray = cv2.cvtColor(image[30:490, 0:460], cv2.COLOR_BGR2GRAY)
gray = gray.reshape(1, 460, 460, 1)
# gray1=gray.reshape(460, 460)
# PIL.Image.fromarray(gray1).show()
return gray
def _remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def _store(self, state, action, reward, done):
self.store_list.append([state, action, reward, done])
# def store_to_remember(self):
# self.store_list[-1][3] = True
# self.store_list[-1][2] = -10
# for x in range(len(self.store_list) - 1):
# elem = self.store_list[x]
# next_elem = self.store_list[x + 1]
# self._remember(elem[0], elem[1], next_elem[2], next_elem[0], next_elem[3])
# self.store_list = []
# def act_store(self, state, reward, done):
# state = self.pre_process(state)
# action = self.act(state)
# self._store(state, action, reward, done)
# return action
def predict(self, state):
return self.TargetNetwork.predict(state)
def act(self, state, pre_process=False):
if pre_process:
state = self.pre_process(state)
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.TargetNetwork.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size, minibatch):
# minibatch = random.sample(self.memory, batch_size)
state, action, reward, next_state, done = minibatch
for state, action, reward, next_state, done in minibatch:
self.tau_counter += 1
# Updating target network - part of fixed Q-targets
if self.tau_counter == self.tau:
self.tau_counter = 0
self.sync_networks(random.randint(0, 100000000))
target = reward
if not done:
print('pred', self.TargetNetwork.predict(next_state))
# Double learning
target_act = np.argmax(self.DQNetwork.predict(next_state))
target = reward + self.gamma * self.TargetNetwork.predict(next_state)[0][target_act]
print('target', target, self.epsilon)
target_f = self.DQNetwork.predict(state)
target_f[0][action] = target
train_history = self.DQNetwork.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name, model):
model.load_weights(name)
def save(self, name, model):
with tf.Session() as sess:
sess.run(model)
tf.train.Saver().save(sess, name)