-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathpredict.py
124 lines (105 loc) · 4.11 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# USAGE
# python predict.py --model lisa/experiments/exported_model/frozen_inference_graph.pb \
# --labels lisa/records/classes.pbtxt \
# --image lisa/vid8/frameAnnotations-MVI_0120.MOV_annotations/stop_1324866406.avi_image4.png \
# --num-classes 3
# import the necessary packages
from object_detection.utils import label_map_util
import tensorflow as tf
import numpy as np
import argparse
import imutils
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True,
help="base path for frozen checkpoint detection graph")
ap.add_argument("-l", "--labels", required=True,
help="labels file")
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-n", "--num-classes", type=int, required=True,
help="# of class labels")
ap.add_argument("-c", "--min-confidence", type=float, default=0.5,
help="minimum probability used to filter weak detections")
args = vars(ap.parse_args())
# initialize a set of colors for our class labels
COLORS = np.random.uniform(0, 255, size=(args["num_classes"], 3))
# initialize the model
model = tf.Graph()
# create a context manager that makes this model the default one for
# execution
with model.as_default():
# initialize the graph definition
graphDef = tf.GraphDef()
# load the graph from disk
with tf.gfile.GFile(args["model"], "rb") as f:
serializedGraph = f.read()
graphDef.ParseFromString(serializedGraph)
tf.import_graph_def(graphDef, name="")
# load the class labels from disk
labelMap = label_map_util.load_labelmap(args["labels"])
categories = label_map_util.convert_label_map_to_categories(
labelMap, max_num_classes=args["num_classes"],
use_display_name=True)
categoryIdx = label_map_util.create_category_index(categories)
# create a session to perform inference
with model.as_default():
with tf.Session(graph=model) as sess:
# grab a reference to the input image tensor and the boxes
# tensor
imageTensor = model.get_tensor_by_name("image_tensor:0")
boxesTensor = model.get_tensor_by_name("detection_boxes:0")
# for each bounding box we would like to know the score
# (i.e., probability) and class label
scoresTensor = model.get_tensor_by_name("detection_scores:0")
classesTensor = model.get_tensor_by_name("detection_classes:0")
numDetections = model.get_tensor_by_name("num_detections:0")
# load the image from disk
image = cv2.imread(args["image"])
(H, W) = image.shape[:2]
# check to see if we should resize along the width
if W > H and W > 1000:
image = imutils.resize(image, width=1000)
# otherwise, check to see if we should resize along the
# height
elif H > W and H > 1000:
image = imutils.resize(image, height=1000)
# prepare the image for detection
(H, W) = image.shape[:2]
output = image.copy()
image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB)
image = np.expand_dims(image, axis=0)
# perform inference and compute the bounding boxes,
# probabilities, and class labels
(boxes, scores, labels, N) = sess.run(
[boxesTensor, scoresTensor, classesTensor, numDetections],
feed_dict={imageTensor: image})
# squeeze the lists into a single dimension
boxes = np.squeeze(boxes)
scores = np.squeeze(scores)
labels = np.squeeze(labels)
# loop over the bounding box predictions
for (box, score, label) in zip(boxes, scores, labels):
# if the predicted probability is less than the minimum
# confidence, ignore it
if score < args["min_confidence"]:
continue
# scale the bounding box from the range [0, 1] to [W, H]
(startY, startX, endY, endX) = box
startX = int(startX * W)
startY = int(startY * H)
endX = int(endX * W)
endY = int(endY * H)
# draw the prediction on the output image
label = categoryIdx[label]
idx = int(label["id"]) - 1
label = "{}: {:.2f}".format(label["name"], score)
cv2.rectangle(output, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.putText(output, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, COLORS[idx], 1)
# show the output image
cv2.imshow("Output", output)
cv2.waitKey(0)