-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzz_lrc_fsupload.py
400 lines (363 loc) · 15.1 KB
/
zz_lrc_fsupload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import io
import os
import pydicom
import numpy as np
import pandas as pd
from scipy import ndimage as nd
from pylinac import FieldAnalysis, Centering
from pylinac.core.image import DicomImage
from skimage.feature import canny
from skimage.transform import hough_circle_peaks, hough_circle
from zipfile import ZipFile
# helper functions
def _field_details_from_dicom(fname=""):
"""
Read RT Image and return geometry info
Args:
fname (str): file path
Returns:
fname (str): file path
g (float): gantry angle
c (float): collimator angle
ds (object): pydicom object
"""
f = zf.open(fname)
f = io.BytesIO(f.read())
# read dicom file
ds = pydicom.dcmread(f)
# record gantry and collimator angles
g = float(round(ds.GantryAngle, 1))
if round(g) == 360.0:
g = 0.0
c = float(round(ds.BeamLimitingDeviceAngle, 1))
if c == 360:
c = 0.0
_, fname = os.path.split(fname)
return fname, g, c, ds
def _file_tally(results={}, test_name=""):
'''
Basic verification of RTImage files and expected beam geometries for each session in the test cycle.
Months: 1a, 1b, 2a, 2b and 3
Args:
results (dict): radiation field size analysis results
test_name (str): month name, e.g. 1a
Returns:
msg (str): verification status message
fault_flag (bool): True if verfication passes, False if verification fails
'''
df = pd.DataFrame.from_dict(results)
msg = "Files processed successfully"
fault_flag = False
machines = len(df["MachineName"].unique())
if machines != 1:
msg = "Files from more than one linac detected, re-upload data from a single machine."
return msg, fault_flag
if test_name.lower() == "1a":
lst = [
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 0)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 90) & (df["C"] == 0)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 90) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 90) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 0)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 270) & (df["C"] == 0)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 270) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 270) & (df["C"] == 270)]),
]
elif test_name.lower() == "1b":
lst = [
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 0)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 90) & (df["C"] == 0)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 90) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 90) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 0)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 270) & (df["C"] == 0)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 270) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 270) & (df["C"] == 270)]),
]
elif test_name.lower() == "2a":
lst = [
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 0)]) - 1,
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 90) & (df["C"] == 0)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 90) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 90) & (df["C"] == 270)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 270) & (df["C"] == 0)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 270) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 270) & (df["C"] == 270)]),
]
elif test_name.lower() == "2b":
lst = [
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 0)]) - 1,
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 90) & (df["C"] == 0)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 90) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 90) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 270) & (df["C"] == 0)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 270) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 270) & (df["C"] == 270)]),
]
elif test_name.lower() == "3":
lst = [
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 0)]) - 1,
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "6X") & (df["G"] == 0) & (df["C"] == 270)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 0)]) - 1,
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 90)]),
len(df[(df["Energy"] == "10X") & (df["G"] == 0) & (df["C"] == 270)]),
]
lst_tally = (set(lst), lst[0])
if len(lst_tally[0]) != 1 or lst_tally[1] != 1:
msg = (
"Incorrect files uploaded for this month's test, check before re-uploading."
)
fault_flag = True
return msg, fault_flag
return msg, fault_flag
def _bb_detect(
ds=None,
BB_size=3.0,
size_range=2.0,
roi=[(-40.0, 40.0, 10.0), (0.0, 0.0, 10.0)],
):
"""
Read RT Image pydicom object and detect BBs in predetermined ROIs
Args:
ds (object): pydicom image object
BB_size (float): expected BB diameter (mm)
size_range (float): possible BB size variation (+/-mm)
roi (list): list containing a tuple for each roi centre in mm (y,x,size)
Returns:
roi_flags (list): list of bools (True if BB detected in ROI)
BB_info (list): list of tuples denoting BB coordinates in pixels (y,x,radius)
"""
roi_flags = [False] * len(roi)
BB_info = [([], [], [])] * len(roi)
# preprocess image
img = ds.pixel_array
img = img.astype("float")
img = nd.median_filter(img, 3)
# image array gemoetry
sid = float(ds.RTImageSID)
px = 1000 / sid * float(ds.ImagePlanePixelSpacing[0])
imdim = np.array(img.shape)
cnt = imdim / 2
# BB radius
radius = BB_size / 2
radius_px = np.round(radius / px)
rng_px = np.ceil(size_range / 2 / px)
if radius_px - rng_px < 2:
r_lo = 2.0
else:
r_lo = radius_px - rng_px
radii = np.arange(r_lo, radius_px + rng_px)
# BB search
for i, r in enumerate(roi):
# convert roi to px
y = int(cnt[0] + np.round(r[0] / px))
x = int(cnt[1] + np.round(r[1] / px))
half_roi = int(np.round(r[2] / px / 2))
# crop image
img_roi = img[y - half_roi : y + half_roi, x - half_roi : x + half_roi]
# canny edge filter and hough circle detection
magnitude = nd.gaussian_gradient_magnitude(img_roi, 0.25)
magnitude = canny(magnitude, sigma=5)
hspaces = hough_circle(magnitude, radii)
accum, cx, cy, rad = hough_circle_peaks(hspaces, radii, total_num_peaks=1)
# flag if BB detected
if accum.size > 0 and accum > 0.6:
roi_flags[i] = True
BB_info[i] = (y - half_roi + cy[0], x - half_roi + cx[0], rad[0])
return roi_flags, BB_info
def _find_field_centre(ds=None, bb_flag="None", bb_loc=(0, 0)):
"""
Calculate field centre from BB location
Args:
ds (object): pydicom image object
bb_flag (str): expected BB location. "centre" at image centre; "suncheck" 4cm offset (y & x); "None" ignore BB and default to image centre
bb_loc (tuple): BB location in pixels (y,x)
Returns:
prcnt_cnt (tuple): beam central axis as a percent of image size (y,x)
cnt_shift (tuple): beam central axis shift in pixels (y,x)
"""
# image array gemoetry
sid = float(ds.RTImageSID)
px = 1000 / sid * float(ds.ImagePlanePixelSpacing[0])
imdim = np.array(ds.pixel_array.shape)
cnt = imdim / 2
bb_loc = np.array(bb_loc)
# BB location
if bb_flag.lower() == "suncheck":
expected_cnt = np.array(
[cnt[0] - np.round(40.0 / px), cnt[1] + np.round(40.0 / px)]
)
prct_cnt = bb_loc / expected_cnt * 0.5
cnt_shift = (bb_loc - expected_cnt) * px
elif bb_flag.lower() == "centre":
prct_cnt = bb_loc / cnt * 0.5
cnt_shift = (bb_loc - cnt) * px
else:
prct_cnt = None
cnt_shift = None
return prct_cnt, cnt_shift
def _analyse_img(
fname=None, collimator_angle=None, centering="None", center_pos=(0.5, 0.5)
):
"""
Measure field edges relative to central axis
Args:
fname (str): file path
collimator_angle (int): must be a cardinal angle (0, 90, 180, 270, 360)
centering (str): "manual" requires specification of beam centre as a fraction of image array; otherwise defaults to automatic centering
center_pos (tuple): beam centre location as a fraction (y,x)
Returns:
Y1 (float): Y1 distance from CAX (mm)
Y2 (float): Y2 distance from CAX (mm)
X1 (float): X1 distance from CAX (mm)
X2 (float): X2 distance from CAX (mm)
Y (float): Y field width (mm)
X (float): X field width (mm)
"""
# define field orientations relative to collimator angle
field_orientations = {
"c_angle": [0, 90, 180, 270, 360],
"cax_names": [
"cax_to_top_mm",
"cax_to_bottom_mm",
"cax_to_left_mm",
"cax_to_right_mm",
],
"coll_names": [
["Y2", "Y1", "X1", "X2"],
["X1", "X2", "Y1", "Y2"],
["Y1", "Y2", "X2", "X1"],
["X2", "X1", "Y2", "Y1"],
["Y2", "Y1", "X1", "X2"],
],
}
fname = zf.open(fname)
fname = io.BytesIO(fname.read())
# pylinac field analysis
img = FieldAnalysis(fname)
if centering.lower() == "manual":
img.analyze(
centering=Centering.MANUAL,
vert_position=center_pos[0],
horiz_position=center_pos[1],
)
else:
img.analyze()
results = img.results_data(as_dict=True)
# estimate actual field sizes
c = int(collimator_angle)
if c == 0 or c == 360:
X = round(results["field_size_horizontal_mm"], 2)
Y = round(results["field_size_vertical_mm"], 2)
elif c == 90 or c == 270:
Y = round(results["field_size_horizontal_mm"], 2)
X = round(results["field_size_vertical_mm"], 2)
else:
Y = False
X = False
# extract measured field sizes
i = field_orientations["c_angle"].index(int(collimator_angle))
coll_order = field_orientations["coll_names"][i]
cax_dict = {}
for j, k in enumerate(coll_order):
cax_dict[k] = round(results[field_orientations["cax_names"][j]], 2)
return cax_dict["Y1"], cax_dict["Y2"], cax_dict["X1"], cax_dict["X2"], Y, X
# Identify test name
test_list_name = META["test_list_name"]
for idx, s in enumerate(test_list_name):
if s == " ":
test_month = test_list_name[idx + 1 :]
# extract dicom file data from zip
with ZipFile(BIN_FILE, "r") as zf:
file = zf.namelist()
list_dcm_files = [s for s in file if ".dcm" in s]
results = {
"G": [],
"C": [],
"X": [],
"Y": [],
"X1": [],
"X2": [],
"Y1": [],
"Y2": [],
"XOffset": [],
"YOffset": [],
"CAXOffset": [],
"BBLoc": [],
"Energy": [],
"MachineName": [],
"FileName": [],
"JawPositionX1": [],
"JawPositionX2": [],
"JawPositionY1": [],
"JawPositionY2": [],
}
for l in list_dcm_files:
# field geometry
dcm_name, gantry_angle, coll_angle, ds = _field_details_from_dicom(l)
_, dcm_fname = os.path.split(dcm_name)
img_desc = ds.RTImageDescription[0 : ds.RTImageDescription.index(" [")].upper()
jawsx = np.round(
ds.ExposureSequence[0].BeamLimitingDeviceSequence[0].LeafJawPositions, 2
)
jawsy = np.round(
ds.ExposureSequence[0].BeamLimitingDeviceSequence[1].LeafJawPositions, 2
)
# record initial results
results["Energy"].append(img_desc)
results["MachineName"].append(ds.StationName)
results["FileName"].append(dcm_fname)
results["G"].append(gantry_angle)
results["C"].append(coll_angle)
# detect BB in image
loc_flag, bb_loc = _bb_detect(ds)
if loc_flag[0]:
bb_type = "suncheck"
bb_loc = bb_loc[0][:2]
elif loc_flag[1]:
bb_type = "centre"
bb_loc = bb_loc[1][:2]
else:
bb_type = "none"
bb_loc = None
cnt_shift = (0, 0)
# find field centre
prcnt_cnt, cnt_shift = _find_field_centre(ds, bb_type, bb_loc)
# field edge analysis
if bb_loc:
y1, y2, x1, x2, y_size, x_size = _analyse_img(
l, coll_angle, "manual", prcnt_cnt
)
else:
y1, y2, x1, x2, y_size, x_size = _analyse_img(l, coll_angle)
# field results
results["BBLoc"].append(bb_type)
results["X"].append(x_size)
results["Y"].append(y_size)
results["X1"].append(x1)
results["X2"].append(x2)
results["Y1"].append(y1)
results["Y2"].append(y2)
results["CAXOffset"].append(cnt_shift)
results["XOffset"].append(round(-x1 + x_size / 2, 2)) # +ve = offset towards X2
results["YOffset"].append(round(-y1 + y_size / 2, 2)) # +ve = offset towards Y2
results["JawPositionX1"].append(jawsx[0])
results["JawPositionX2"].append(jawsx[1])
results["JawPositionY1"].append(jawsy[0])
results["JawPositionY2"].append(jawsy[1])
msg, rslt_flag = _file_tally(results, test_month)
UTILS.set_comment(msg)
zz_lrc_fsupload = results