forked from tensorflow/tfjs-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.js
212 lines (178 loc) · 5.5 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as mobilenetModule from '@tensorflow-models/mobilenet';
import * as tf from '@tensorflow/tfjs-core';
import '@tensorflow/tfjs-backend-cpu';
import '@tensorflow/tfjs-backend-webgl';
import Stats from 'stats.js';
import * as knnClassifier from '@tensorflow-models/knn-classifier';
const videoWidth = 300;
const videoHeight = 250;
const stats = new Stats();
// Number of classes to classify
const NUM_CLASSES = 3;
// K value for KNN
const TOPK = 3;
const infoTexts = [];
let training = -1;
let classifier;
let mobilenet;
let video;
function isAndroid() {
return /Android/i.test(navigator.userAgent);
}
function isiOS() {
return /iPhone|iPad|iPod/i.test(navigator.userAgent);
}
function isMobile() {
return isAndroid() || isiOS();
}
/**
* Loads a the camera to be used in the demo
*
*/
async function setupCamera() {
if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
throw new Error(
'Browser API navigator.mediaDevices.getUserMedia not available');
}
const video = document.getElementById('video');
video.width = videoWidth;
video.height = videoHeight;
const mobile = isMobile();
const stream = await navigator.mediaDevices.getUserMedia({
'audio': false,
'video': {
facingMode: 'user',
width: mobile ? undefined : videoWidth,
height: mobile ? undefined : videoHeight,
},
});
video.srcObject = stream;
return new Promise((resolve) => {
video.onloadedmetadata = () => {
resolve(video);
};
});
}
/**
* Setup training GUI. Adds a training button for each class,
* and sets up mouse events.
*/
function setupGui() {
// Create training buttons and info texts
for (let i = 0; i < NUM_CLASSES; i++) {
const div = document.createElement('div');
document.body.appendChild(div);
div.style.marginBottom = '10px';
// Create training button
const button = document.createElement('button');
button.innerText = 'Train ' + i;
div.appendChild(button);
// Listen for mouse events when clicking the button
button.addEventListener('click', () => {
training = i;
});
// Create info text
const infoText = document.createElement('span');
infoText.innerText = ' No examples added';
div.appendChild(infoText);
infoTexts.push(infoText);
}
}
/**
* Sets up a frames per second panel on the top-left of the window
*/
function setupFPS() {
stats.showPanel(0); // 0: fps, 1: ms, 2: mb, 3+: custom
document.body.appendChild(stats.dom);
}
/**
* Animation function called on each frame, running prediction
*/
async function animate() {
stats.begin();
// Get image data from video element
const image = tf.browser.fromPixels(video);
let logits;
// 'conv_preds' is the logits activation of MobileNet.
const infer = () => mobilenet.infer(image, 'conv_preds');
// Train class if one of the buttons is held down
if (training != -1) {
logits = infer();
// Add current image to classifier
classifier.addExample(logits, training);
// Reset the training bit so we only collect during clicks.
training = -1;
}
// If the classifier has examples for any classes, make a prediction!
const numClasses = classifier.getNumClasses();
if (numClasses > 0) {
logits = infer();
const res = await classifier.predictClass(logits, TOPK);
for (let i = 0; i < NUM_CLASSES; i++) {
// Make the predicted class bold
if (res.label == `${i}`) {
infoTexts[i].style.fontWeight = 'bold';
} else {
infoTexts[i].style.fontWeight = 'normal';
}
const classExampleCount = classifier.getClassExampleCount();
// Update info text
if (classExampleCount[i] > 0) {
const conf = res.confidences[i] * 100;
infoTexts[i].innerText = ` ${classExampleCount[i]} examples - ${conf}%`;
}
}
}
image.dispose();
if (logits != null) {
logits.dispose();
}
stats.end();
requestAnimationFrame(animate);
}
/**
* Kicks off the demo by loading the knn model, finding and loading
* available camera devices, and setting off the animate function.
*/
export async function bindPage() {
classifier = knnClassifier.create();
mobilenet = await mobilenetModule.load();
document.getElementById('loading').style.display = 'none';
document.getElementById('main').style.display = 'block';
// Setup the GUI
setupGui();
setupFPS();
// Setup the camera
try {
video = await setupCamera();
video.play();
} catch (e) {
let info = document.getElementById('info');
info.textContent = 'this browser does not support video capture,' +
'or this device does not have a camera';
info.style.display = 'block';
throw e;
}
// Start animation loop
animate();
}
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia || navigator.mozGetUserMedia;
// kick off the demo
bindPage();