-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmobius_neural_network.py
208 lines (173 loc) · 6.95 KB
/
mobius_neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from torch import nn
from torch.autograd import Function
from torch.nn.init import xavier_uniform_, uniform_
from manifold import Mobius
from base import asinh
ETA = 1e-9
def euclidean_non_lin(eucl_h, non_lin="id"):
if non_lin == 'id':
return eucl_h
elif non_lin == 'relu':
return torch.relu(eucl_h)
elif non_lin == 'tanh':
return torch.tanh(eucl_h)
elif non_lin == 'sigmoid':
return torch.sigmoid(eucl_h)
elif non_lin == 'softmax':
return torch.softmax(eucl_h, dim=1)
elif non_lin == 'softplus':
return nn.functional.softplus(eucl_h) + ETA
elif non_lin == 'elu':
return nn.functional.elu(eucl_h)
elif non_lin == 'leaky_relu':
return nn.functional.leaky_relu(eucl_h)
elif non_lin == 'log_softmax':
return torch.log_softmax(eucl_h, dim=1)
return eucl_h
# Applies a non linearity sigma to a hyperbolic h using:
# exp_0(sigma(log_0(h)))
def mobius_hyperbolic_non_lin(
hyp_h, manifold, non_lin="id", hyperbolic_output=False):
if non_lin == "id":
return (
hyp_h if hyperbolic_output
else manifold.logm_zero(hyp_h))
else:
eucl_h = euclidean_non_lin(
manifold.logm_zero(hyp_h), non_lin=non_lin)
return (
manifold.expm_zero(eucl_h)
if hyperbolic_output else eucl_h)
class MobiusId(nn.Module):
def __init__(self, manifold=None, hyperbolic_output=True):
super(MobiusId, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.hyperbolic_output = hyperbolic_output
def forward(self, x):
return mobius_hyperbolic_non_lin(
x, manifold=self.manifold,
hyperbolic_output=self.hyperbolic_output,
non_lin='id')
class MobiusTanh(nn.Module):
def __init__(self, manifold=None, hyperbolic_output=True):
super(MobiusTanh, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.hyperbolic_output = hyperbolic_output
def forward(self, x):
return mobius_hyperbolic_non_lin(
x, manifold=self.manifold,
hyperbolic_output=self.hyperbolic_output,
non_lin='tanh')
class MobiusSigmoid(nn.Module):
def __init__(self, manifold=None, hyperbolic_output=True):
super(MobiusSigmoid, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.hyperbolic_output = hyperbolic_output
def forward(self, x):
return mobius_hyperbolic_non_lin(
x, manifold=self.manifold,
hyperbolic_output=self.hyperbolic_output,
non_lin='sigmoid')
class MobiusElu(nn.Module):
def __init__(self, manifold=None, hyperbolic_output=True):
super(MobiusElu, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.hyperbolic_output = hyperbolic_output
def forward(self, x):
return mobius_hyperbolic_non_lin(
x, manifold=self.manifold,
hyperbolic_output=self.hyperbolic_output,
non_lin='elu')
class MobiusRelu(nn.Module):
def __init__(self, manifold=None, hyperbolic_output=True):
super(MobiusRelu, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.hyperbolic_output = hyperbolic_output
def forward(self, x):
return mobius_hyperbolic_non_lin(
x, manifold=self.manifold,
hyperbolic_output=self.hyperbolic_output,
non_lin='relu')
class MobiusLinear(nn.Module):
def __init__(self, input_features, output_features, manifold=None,
bias=True, left_addition=True):
super(MobiusLinear, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.input_features = input_features
self.output_features = output_features
self.left_addition = left_addition
# Initiallize
self.weight = nn.Parameter(torch.Tensor(output_features,
input_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(output_features))
else:
self.register_parameter('bias', None)
xavier_uniform_(self.weight)
if self.bias is not None:
self.bias.data.uniform_(-.01, .01)
def forward(self, x):
if self.bias is not None:
if not self.left_addition:
h = self.manifold.add(
self.manifold.mat_mul(self.weight, x),
self.manifold.expm_zero(self.bias)
)
else:
h = self.manifold.add(
self.manifold.expm_zero(self.bias),
self.manifold.mat_mul(self.weight, x),
)
else:
h = self.manifold.mat_mul(self.weight, x)
return h
def optim_params(self):
""" To use with GeoOpt
"""
return [{
'params': self.parameters(),
'rgrad': self.manifold.rgrad,
'expm': self.manifold.expm,
'logm': self.manifold.logm,
}, ]
class MobiusClassificationLayer(nn.Module):
def __init__(self, input_features, n_classes, manifold=None,
bias=True, left_addition=True, signed=True):
super(MobiusClassificationLayer, self).__init__()
self.manifold = Mobius() if manifold is None else manifold
self.input_features = input_features
self.n_classes = n_classes
self.left_addition = left_addition
self.signed = signed
# Initiallize
self.weight = nn.Parameter(torch.Tensor(n_classes, input_features))
self.bias = nn.Parameter(torch.Tensor(n_classes, input_features))
xavier_uniform_(self.weight)
self.bias.data.uniform_(-.01, .01)
def forward(self, x):
output = []
for c in range(self.n_classes):
a = self.weight[c, :]
p = self.bias[c, :]
norm_a_p = self.manifold.norm(p, a) #* self.manifold.s
decision = self.manifold.dist2plane(
x=x, p=p, a=a, signed=self.signed) * norm_a_p
output.append(decision)
return torch.cat(output, dim=1)
def optim_params(self):
""" To use with GeoOpt
"""
return [{
'params': self.parameters(),
'rgrad': self.manifold.rgrad,
'expm': self.manifold.expm,
'logm': self.manifold.logm,
}, ]
if __name__ == "__main__":
mobius = Mobius(eps=1e-15)
model = nn.Sequential(*[
MobiusLinear(input_features=2, output_features=2, manifold=mobius),
MobiusRelu(manifold=mobius),
MobiusLinear(input_features=2, output_features=2, manifold=mobius),
])