-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
190 lines (156 loc) · 4.83 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd.variable import Variable
from torchvision import transforms
from torchvision.datasets import MNIST
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
import imageio
import numpy as np
from google.colab import drive
drive.mount("/content/drive")
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,),(0.5,))
])
to_image = transforms.ToPILImage()
trainset = MNIST(root='/content/drive/MyDrive/', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=100, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Generator(nn.Module):
def __init__(self):
super(Generator,self).__init__()
self.in_feats = 128
self.out_feats = 784
self.fc0 = nn.Sequential(
nn.Linear(self.in_feats,256),
nn.ReLU()
)
self.fc1 = nn.Sequential(
nn.Linear(256,512),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(512,1024),
nn.ReLU()
)
self.fc4 = nn.Sequential(
nn.Linear(1024,self.out_feats),
nn.Tanh()
)
def forward(self,x):
x = self.fc0(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc4(x)
x = x.view(-1,1,28,28)
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator,self).__init__()
self.in_feats = 784
self.out_feats = 1
self.fc0 = nn.Sequential(
nn.Linear(self.in_feats,512),
nn.ReLU()
)
self.fc1 = nn.Sequential(
nn.Linear(512,256),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(256,128),
nn.ReLU()
)
self.fc3 = nn.Sequential(
nn.Linear(128,64),
nn.ReLU()
)
self.fc4 = nn.Sequential(
nn.Linear(64,self.out_feats),
nn.Sigmoid()
)
def forward(self,x):
x = x.view(-1, 784)
x = self.fc0(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = self.fc4(x)
return x
generator = Generator()
discriminator = Discriminator()
generator.to(device)
discriminator.to(device)
def noisydata(n,feats=128):
return Variable(torch.randn(n,feats)).to(device)
def highestvalues(n):
data = Variable(torch.ones(n,1))
return data.to(device)
def lowestvalues(n):
data = Variable(torch.zeros(n,1))
return data.to(device)
gen_optim = optim.Adam(generator.parameters(), lr=2e-4)
dis_optim = optim.Adam(discriminator.parameters(), lr=2e-4)
g_losses = []
d_losses = []
images = []
criteria = nn.BCELoss()
def discriminator_training(real_data,fake_data,optimizer):
'''
Steps:
1. take in real and fake data
2. compare real data to ones and fake data to zeros to differentiate between them (BCE Loss formula)
3. Compute errors and then step the optimizer
'''
size = real_data.size(0)
optimizer.zero_grad()
real_predict = discriminator(real_data)
real_error = criteria(real_predict,highestvalues(size))
real_error.backward()
fake_predict = discriminator(fake_data)
fake_error = criteria(fake_predict,lowestvalues(size))
fake_error.backward()
optimizer.step()
return real_error + fake_error
def generator_training(fake_data,optimizer):
'''
1. main idea is maximizing the d(g(x)) on fake data.
'''
size = fake_data.size(0)
optimizer.zero_grad()
fake_predict = discriminator(fake_data)
fake_error = criteria(fake_predict,highestvalues(size))
fake_error.backward()
optimizer.step()
return fake_error
epochs = 100
k = 1
test_image_noise = noisydata(64)
g_losses = []
d_losses = []
generator.train()
discriminator.train()
for epoch in range(epochs):
g_error = 0.0
d_error = 0.0
for i, data in enumerate(trainloader):
imgs, _ = data
n = len(imgs)
for j in range(k):
fake_data = generator(noisydata(n)).detach()
real_data = imgs.to(device)
#d_error += train_discriminator(d_optim, real_data, fake_data)
d_error = d_error + discriminator_training(real_data, fake_data,dis_optim)
fake_data = generator(noisydata(n))
g_error = g_error + generator_training(fake_data,gen_optim)
print(i)
img = generator(test_image_noise).cpu().detach()
img = make_grid(img)
images.append(img)
g_losses.append(g_error/i)
d_losses.append(d_error/i)
print('Epoch Number: {}, generator"s loss: {:.8f} discriminator"s loss: {:.8f}\r'.format(epoch, g_error/i, d_error/i))
print("Training is done!")
torch.save(generator.state_dict(), 'generator.pth')