-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fchead.py
126 lines (105 loc) · 4.75 KB
/
train_fchead.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from bayes_opt import BayesianOptimization
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import MLFlowLogger
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor
import torch
import random
from argparse import ArgumentParser
from pcl.builder import *
from pcl.paths import *
from pcl.classifier import *
from pcl.util.utils import get_pcl_encoder_weights
seed = 10
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
parser = ArgumentParser()
# PCL encoder
parser.add_argument("--arch", type=str, choices=["3dresnet", "densenet"])
parser.add_argument("--pcl_encoder_checkpoint_path", type=str)
parser.add_argument("--latent_dim", type=int)
parser.add_argument("--num_prototypes", type=int)
# Dataset
parser.add_argument("--adni_fold_idx", type=int)
parser.add_argument("--adni_labels", default="0,1,2")
# FC head
parser.add_argument("--num_layers", type=int, default=1)
parser.add_argument("--num_outputs", type=int, default=3)
parser.add_argument("--head_init_type", type=str, default="protopnet", choices=["protopnet", "random"])
parser.add_argument("--activation_function", type=str, default="relu")
parser.add_argument("--head_bias", action="store_true")
# FC head training
parser.add_argument("--use_l1_reg", action="store_true")
parser.add_argument("--overfit", action="store_true")
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--accumulate_grad_batches", type=int, default=8)
parser.add_argument("--num_epochs", type=int, default=100)
parser.add_argument("--optimizer", type=str, default="adam", choices=["adam", "sgd"])
parser.add_argument("--mlflow_exp_name", type=str)
args = parser.parse_args()
args.adni_labels = [int(l) for l in args.adni_labels.split(',')]
# Set up config
config = vars(args)
print(f"Config: {config}")
# Load encoder
print("Loading encoder...")
if args.arch == "densenet":
encoder = DenseNetEncoder(dim=args.latent_dim)
elif args.arch == "3dresnet":
encoder = ThreeDResNet(in_channels=1, n_outputs=args.latent_dim)
state_dict = get_pcl_encoder_weights(args.pcl_encoder_checkpoint_path, momentum_encoder=True)
encoder.load_state_dict(state_dict)
encoder = encoder.cuda()
encoder.eval()
# Load pushed prototypes
print("Loading pushed prototypes...")
pushed_prototypes = torch.load(os.path.join(args.pcl_encoder_checkpoint_path, f"pushed_prototypes_{config['adni_fold_idx']}-train_{args.num_prototypes}prototypes"))
def model_score(config):
# Load classifier
model = PCLProtoPNet(encoder=encoder,
pushed_prototypes=pushed_prototypes,
config=config)
# Set logger
mlf_logger = MLFlowLogger(experiment_name=config["mlflow_exp_name"], tracking_uri=MLFLOW_DIR)
mlf_logger.log_hyperparams(config)
# Set callbacks
callbacks = []
checkpoint_callback = ModelCheckpoint(monitor="val_loss", mode="min", dirpath=os.path.join(MLFLOW_DIR, mlf_logger._experiment_id, mlf_logger._run_id, "checkpoints"),
filename="{epoch}-{val_loss:.2f}", save_last=False)
callbacks.append(checkpoint_callback)
lr_monitor_callback = LearningRateMonitor(logging_interval='epoch')
callbacks.append(lr_monitor_callback)
# Set trainer
trainer = Trainer(max_epochs=config["num_epochs"],
devices=1,
accelerator="gpu",
accumulate_grad_batches=config["accumulate_grad_batches"],
log_every_n_steps=1,
check_val_every_n_epoch=1,
logger=mlf_logger,
callbacks=callbacks)
# Train model
trainer.fit(model)
return model.final_val_bacc
def optimize_classifier(config):
def model_fn(lr, weight_decay, l1_lambda):
config["lr"] = lr
config["weight_decay"] = weight_decay
config["l1_lambda"] = l1_lambda
return model_score(config)
optimizer = BayesianOptimization(
f=model_fn,
pbounds={
"lr": (1e-5, 1e-2),
"weight_decay": (1e-5, 1e-2),
"l1_lambda": (1e-5, 1e-2)
},
verbose=2, # verbose = 1 prints only when a maximum is observed, verbose = 0 is silent
random_state=1,
)
optimizer.maximize(n_iter=25, init_points=1)
print("Running Bayesian optimization...")
optimize_classifier(config)