forked from shubham1172/MNISTDigitRecoginition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
30 lines (24 loc) · 1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# models
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
def simple_model(num_pixels, num_classes):
# create
model = Sequential()
model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu'))
model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax'))
# compile
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def simple_cnn_model(shape, num_classes):
# create
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=shape, activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
# compile
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model