-
Notifications
You must be signed in to change notification settings - Fork 2
/
trainer.py
456 lines (373 loc) · 17.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import os
import time
import random
import shutil
import argparse
import warnings
from datetime import datetime
import torch
import torch.optim
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.models as models
import numpy as np
from sklearn.metrics import f1_score, balanced_accuracy_score
import tblog
from utils import *
from model import Model
from dataset import get_loaders, dali_is_enabled
from cerranet import cerranet
if tblog.is_enabled:
from tqdm import tqdm
model_names = sorted([name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])] + ['cerranet'])
accepted_metrics = ['loss', 'f1-score', 'accuracy', 'b-accuracy']
parser = argparse.ArgumentParser(description='PyTorch Cerrado/Dataset assessment')
parser.add_argument('--root', '-r', metavar='PATH', default='./data',
type=PathType(exists=True, type='dir'),
help='root of data directory')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('--ts', '--training-split', default=0.8, type=float,
metavar='TS', help='fraction of data to reserve for training (default: 0.8)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--runs', default=1, type=int, metavar='N',
help='number of repetitions of the experiment (default: 5)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run (default: 200)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N', help='mini-batch size (default: 32)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate (default: 0.001)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--lr-steps', default=None, type=int, nargs="+",
metavar='N', help='epochs to decay learning rate (default=None)')
parser.add_argument('--lr-decay', default=1, type=float, metavar='LD',
help='lr decay factor (default: 1.0)')
parser.add_argument('--patience', default=10, type=int, metavar='N',
help='Number of epochs to wait if no improvement and then stop the training (default: none)')
parser.add_argument('--min-delta', default=0.0, type=float, metavar='MD',
help='A minimum increase in the score to qualify as an improvement (default: 0.0)')
parser.add_argument('--following-metric', dest='following_metric', default='f1-score', choices=accepted_metrics,
help=f"metric to be followed. ({' | '.join(accepted_metrics)}, default=f1-score)")
parser.add_argument('--print-freq', '-p', default=600, type=int,
metavar='N', help='print frequency (default: 20)')
parser.add_argument('--resume', dest='resume', action='store_true',
help='resume from checkpoint')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training (default: none)')
parser.add_argument('--gpu', type=int, default=0,
help='GPU id to use (default: none)')
parser.add_argument('--save-every', dest='save_every', metavar='N',
help='Save checkpoints at every specified number of epochs (default: 25)',
type=int, default=25)
parser.add_argument('--exp-name', dest='exp_name', default='', type=str,
help='Suffix to be added at the end of the logdir')
parser.add_argument('--channels-last', type=bool, default=False)
num_classes = 5
def main():
args = parser.parse_args()
print('Training arguments:')
for k, v in vars(args).items():
print('\t{}: {}'.format(k, v))
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
warnings.warn('You have chosen to seed training.')
if args.gpu is None:
args.device = 'cpu'
warnings.warn("You haven't chosen a specific GPU, so CPU will be used.")
else:
args.device = f'cuda:{args.gpu}'
if args.following_metric == 'loss':
args.compare_metrics = lambda before, after: before > after
else:
args.compare_metrics = lambda before, after: before < after
test_averages = {x: np.zeros(args.runs) for x in accepted_metrics}
for run in range(args.runs):
train_loader, val_loader, test_loader = get_loaders(run, args)
# Simply call main_worker function
test_metrics = main_worker(run, train_loader, val_loader, test_loader, args)
for key in test_metrics.keys(): test_averages[key][run] = test_metrics[key]
print(' * Best Tesst average metrics -> ')
print('\t' + ' '.join([f'{key}:{np.mean(test_averages[key]):.3f}/{np.std(test_averages[key]):.3f}' for key in test_averages.keys()]))
def main_worker(run, train_loader, val_loader, test_loader, args):
run_prefix = args.arch.lower() + '_' + \
str(run + 1) + '_of_' + str(args.runs)
run_exp = "{}_arch{}_runs{}_epochs{}_lr{}_batchsize{}_patience{}_pretrained{}_seed{}_trainingsplit{}_follow{}".format(
args.exp_name,
args.arch,
args.runs,
args.epochs,
args.lr,
args.batch_size,
"True" if args.patience is not None else "False",
args.pretrained,
args.seed,
args.ts,
args.following_metric)
run_dir = os.path.join('runs', run_exp, run_prefix)
if not os.path.isdir(run_dir):
os.makedirs(run_dir)
if tblog.is_enabled:
tblog.logdir = run_dir
print("Use {} for training".format(args.device))
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
if 'cerranet' in args.arch:
backbone = cerranet(pretrained=True)
elif 'inception' in args.arch:
backbone = models.__dict__[args.arch](pretrained=True, aux_logits=False)
else:
backbone = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
if 'cerranet' in args.arch:
backbone = cerranet()
elif 'inception' in args.arch:
backbone = models.__dict__[args.arch](aux_logits=False)
else:
backbone = models.__dict__[args.arch]()
model = Model(backbone, num_classes)
print(model)
if hasattr(torch, 'channels_last') and hasattr(torch, 'contiguous_format'):
if args.channels_last:
memory_format = torch.channels_last
else:
memory_format = torch.contiguous_format
model = model.to(args.device, memory_format=memory_format)
else:
model = model.to(args.device)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if not args.lr_steps is None:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
gamma=args.lr_decay,
milestones=args.lr_steps,
last_epoch=args.start_epoch - 1)
# optionally resume from a checkpoint
best_followed = 0.
if args.resume:
if args.evaluate:
filename = os.path.join(run_dir, 'model_best.pth.tar')
else:
filename = os.path.join(run_dir, 'checkpoint.pth.tar')
if os.path.isfile(filename):
print("=> loading checkpoint '{}'".format(filename))
if not args.gpu is None:
checkpoint = torch.load(filename)
else:
checkpoint = torch.load(filename, map_location=args.device)
rsetattr(args, 'start_epoch', checkpoint['epoch'])
best_followed = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if not args.lr_steps is None:
lr_scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(filename, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(filename))
if args.evaluate:
metrics = validate(test_loader, model, criterion, args)
return metrics
counter = 0
writer = tblog.SummaryWriter(tblog.logdir) if tblog.is_enabled else None
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
train_metrics = train(train_loader, model, criterion, optimizer, epoch, args)
if not args.lr_steps is None:
lr_scheduler.step()
# evaluate on validation set
val_metrics = validate(val_loader, model, criterion, args)
val_followed = val_metrics[args.following_metric]
if tblog.is_enabled:
writer.add_scalar('Loss/train', train_metrics['loss'], epoch)
writer.add_scalar('Loss/test', val_metrics['loss'], epoch)
writer.add_scalar('Accuracy/train', train_metrics['accuracy'], epoch)
writer.add_scalar('Accuracy/test', val_metrics['accuracy'], epoch)
writer.add_scalar('Balanced_Accuracy/train', train_metrics['b-accuracy'], epoch)
writer.add_scalar('Balanced_Accuracy/test', val_metrics['b-accuracy'], epoch)
writer.add_scalar('F1-score/train', train_metrics['f1-score'], epoch)
writer.add_scalar('F1-score/test', val_metrics['f1-score'], epoch)
# check early stopping condition
if not args.patience is None:
if not args.compare_metrics(best_followed + args.min_delta, val_followed):
is_best = False
counter += 1
if counter >= args.patience:
#save last
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_followed,
'optimizer' : optimizer.state_dict(),
'scheduler' : None if args.lr_steps is None else lr_scheduler.state_dict(),
}, is_best, run_dir)
#stop
print('Early Stopping: Stop training')
break
else:
best_followed = val_followed
is_best = True
counter = 0
else:
# remember best prec@1 and save checkpoint
is_best = args.compare_metrics(best_followed, val_followed)
best_followed = val_followed if is_best else best_followed
if is_best or epoch % args.save_every == 0 or epoch == args.epochs-1:
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_followed,
'optimizer' : optimizer.state_dict(),
'scheduler' : None if args.lr_steps is None else lr_scheduler.state_dict(),
}, is_best, run_dir)
if dali_is_enabled:
train_loader.reset()
val_loader.reset()
print('test phase:')
test_metrics = validate(test_loader, model, criterion, args, is_test=True)
return test_metrics
def train(train_loader, model, criterion, optimizer, epoch, args):
"""
Run one train epoch
"""
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Prec@1', ':6.2f')
top5 = AverageMeter('Prec@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
y_true, y_pred, = [], []
for i, data in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if dali_is_enabled:
images = data[0]['images']
target = data[0]["label"].squeeze(-1).long()
else:
if not args.gpu is None:
images = data[0].to(args.gpu, non_blocking=True)
else:
images = data[0]
if not args.gpu is None and torch.cuda.is_available():
target = data[1].cuda(args.gpu, non_blocking=True)
else:
target = data[1]
# compute output
output = model(images)
loss = criterion(output, target)
y_true.extend(target.cpu().numpy())
y_pred.extend(torch.argmax(output, dim=1).cpu().numpy())
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(prec1[0], images.size(0))
top5.update(prec5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if (i+1) % args.print_freq == 0 or (i+1) == len(train_loader) :
print('[{0}]: '.format(datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')), end='')
progress.display(i+1)
f1 = f1_score(y_true, y_pred, average='weighted')*100.0
bacc = balanced_accuracy_score(y_true, y_pred)*100.0
return {'loss': losses.avg, 'accuracy': top1.avg, 'f1-score': f1, 'b-accuracy': bacc}
def validate(val_loader, model, criterion, args, is_test=False):
"""
Run evaluation
"""
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Prec@1', ':6.2f')
top5 = AverageMeter('Prec@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
y_true, y_pred = [], []
for i, data in enumerate(val_loader):
if dali_is_enabled:
images = data[0]['images']
target = data[0]["label"].squeeze(-1).long()
else:
if not args.gpu is None:
images = data[0].to(args.gpu, non_blocking=True)
else:
images = data[0]
if not args.gpu is None and torch.cuda.is_available():
target = data[1].cuda(args.gpu, non_blocking=True)
else:
images = data[1]
# compute output
output = model(images)
loss = criterion(output, target)
y_true.extend(target.cpu().numpy())
y_pred.extend(torch.argmax(output, dim=1).cpu().numpy())
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(prec1[0], images.size(0))
top5.update(prec5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if (i+1) % args.print_freq == 0 or (i+1) == len(val_loader):
print('[{0}]: '.format(datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S')), end='')
progress.display(i+1)
f1 = f1_score(y_true, y_pred, average='weighted')*100.0
bacc = balanced_accuracy_score(y_true, y_pred)*100.0
if is_test:
print(' * TEST * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} F1-Score {f1:.3f} B.Acc. {bacc:.3f}'
.format(top1=top1,
top5=top5,
f1=f1,
bacc=bacc))
else:
print(' * Validation * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} F1-Score {f1:.3f} B.Acc. {bacc:.3f}'
.format(top1=top1,
top5=top5,
f1=f1,
bacc=bacc))
return {'loss': losses.avg, 'accuracy': top1.avg, 'f1-score': f1, 'b-accuracy': bacc}
if __name__ == '__main__':
main()