-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL1QP_FeatureSign_yang.m
80 lines (67 loc) · 1.49 KB
/
L1QP_FeatureSign_yang.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
%% L1QP_FeatureSign solves nonnegative quadradic programming
%% using Feature Sign.
%%
%% min 0.5*x'*A*x+b'*x+\lambda*|x|
%%
%% [net,control]=NNQP_FeatureSign(net,A,b,control)
%%
%%
%%
function [x]=L1QP_FeatureSign_yang(lambda,A,b)
A = double(A);
b = double(b);
EPS = 1e-9;
x=zeros(size(A, 1), 1); %coeff
grad=A*sparse(x)+b;
[ma mi]=max(abs(grad).*(x==0));
while true,
if grad(mi)>lambda+EPS,
x(mi)=(lambda-grad(mi))/A(mi,mi);
elseif grad(mi)<-lambda-EPS,
x(mi)=(-lambda-grad(mi))/A(mi,mi);
else
if all(x==0)
break;
end
end
while true,
a=x~=0; %active set
Aa=A(a,a);
ba=b(a);
xa=x(a);
%new b based on unchanged sign
vect = -lambda*sign(xa)-ba;
x_new= Aa\vect;
idx = find(x_new);
o_new=(vect(idx)/2 + ba(idx))'*x_new(idx) + lambda*sum(abs(x_new(idx)));
%cost based on changing sign
s=find(xa.*x_new<=0);
if isempty(s)
x(a)=x_new;
loss=o_new;
break;
end
x_min=x_new;
o_min=o_new;
d=x_new-xa;
t=d./xa;
for zd=s',
x_s=xa-d/t(zd);
x_s(zd)=0; %make sure it's zero
% o_s=L1QP_loss(net,Aa,ba,x_s);
idx = find(x_s);
o_s = (Aa(idx, idx)*x_s(idx)/2 + ba(idx))'*x_s(idx)+lambda*sum(abs(x_s(idx)));
if o_s<o_min,
x_min=x_s;
o_min=o_s;
end
end
x(a)=x_min;
loss=o_min;
end
grad=A*sparse(x)+b;
[ma mi]=max(abs(grad).*(x==0));
if ma <= lambda+EPS,
break;
end
end