-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathfilter.hh
106 lines (93 loc) · 2.11 KB
/
filter.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*
Some finite impulse response filter functions
Copyright 2018 Ahmet Inan <inan@aicodix.de>
*/
#pragma once
#include "const.hh"
#include "utils.hh"
#include "unit_circle.hh"
namespace DSP {
template <typename TYPE>
class LowPass
{
TYPE f;
public:
LowPass(TYPE cutoff) : f(TYPE(2) * cutoff) {}
TYPE operator () (int n, int N) const
{
TYPE x = TYPE(n) - TYPE(0.5) * TYPE(N - 1);
return f * sinc(f * x);
}
};
template <typename TYPE>
class LowPass2
{
int num, den;
TYPE fac;
public:
LowPass2(int num, int den) : num(num), den(den), fac(TYPE(2*num)/TYPE(den)) {}
TYPE operator () (int n, int N) const
{
int twox = 2 * n - (N - 1);
return !twox ? fac : fac *
UnitCircle<TYPE>::sin((twox * num) % (2 * den), 2 * den) /
(Const<TYPE>::HalfPi() * fac * TYPE(twox));
}
};
template <typename TYPE>
class HighPass
{
TYPE f;
public:
HighPass(TYPE cutoff) : f(TYPE(2) * cutoff) {}
TYPE operator () (int n, int N) const
{
TYPE x = TYPE(n) - TYPE(0.5) * TYPE(N - 1);
// if (N%1) return delta(x) - f * sinc(f * x);
return sinc(x) - f * sinc(f * x);
}
};
template <typename TYPE>
class HighPass2
{
int num, den;
TYPE fac;
public:
HighPass2(int num, int den) : num(num), den(den), fac(TYPE(2*num)/TYPE(den)) {}
TYPE operator () (int n, int N) const
{
int twox = 2 * n - (N - 1);
return !twox ? TYPE(1) - fac :
UnitCircle<TYPE>::sin(twox % 4, 4) / (Const<TYPE>::HalfPi() * TYPE(twox))
- fac * UnitCircle<TYPE>::sin((twox * num) % (2 * den), 2 * den) /
(Const<TYPE>::HalfPi() * fac * TYPE(twox));
}
};
template <typename TYPE>
class BandPass
{
TYPE f0, f1;
public:
BandPass(TYPE cutoff0, TYPE cutoff1) :
f0(TYPE(2) * cutoff0), f1(TYPE(2) * cutoff1) {}
TYPE operator () (int n, int N) const
{
TYPE x = TYPE(n) - TYPE(0.5) * TYPE(N - 1);
return f1 * sinc(f1 * x) - f0 * sinc(f0 * x);
}
};
template <typename TYPE>
struct HilbertTransform
{
TYPE operator () (int n, int N) const
{
if (N&1) {
int x = n - (N - 1) / 2;
return x&1 ? TYPE(2) / (Const<TYPE>::Pi() * TYPE(x)) : TYPE(0);
} else {
TYPE x = TYPE(n) - TYPE(0.5) * TYPE(N - 1);
return TYPE(1) / (Const<TYPE>::Pi() * x);
}
}
};
}