Skip to content

Latest commit

 

History

History
95 lines (71 loc) · 6.75 KB

README.md

File metadata and controls

95 lines (71 loc) · 6.75 KB

Exploration Metrics in RL

This repository presents experiments on measuring exploration in Reinforcement Learning conducted by Team 43 during AIRI Summer School 2024

Project Results

For results, see our report

How to use

  • Install cleanrl along with its dependencies
  • To launch experiment on Robotics environment (PointMaze, AntMaze), run:
python ppo_experiments.py
  • To launch experiment on Atari environments (MontezumaRevenge), run:
python ppo_experiments_atari.py
  • Metrics for ppo_experiments.py are defined in metric_main.py. You can track them by passing corresponding arguments to the script
  • Available metrics for atari are defined in ppo_experiments_atari.py. You can track them by passing corresponding arguments to the script

Reproducing results

Let's define Exploration Boost as one of the following algorithm modes:

  • Entriopy: Standard PPO Entropy term is added to policy loss. Other boosts do not exclude entropy from loss, we just don't mention it
  • RND: Adding intrinsic reward from RND output. More details here
  • Model Disagreement: Adding intrinsic reward from Model Disagreement output. More details here

We ran experiments with the following settings:

  • For environments PointMaze and AntMaze:
    • Running every map size (small, medium large)
    • Running with Exploration boosts (Entropy, RND)
    • Running only large maze map with Model Disagreement Exploration boost
    • Tracking State Counting, RND, and Model Disagreement metrics on every run
  • For environment MontezumaRevenge:
    • Running with every Exploration boost (Entropy, RND, Model Disagreement)
    • Tracking Episoding Length, RND, Model Disagreement metrics on every run

Run Scripts

Below we present shell scripts we used for our experiments:

# POINT_MAZE
# RND boost, small maze
python ppo_experiments.py --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map small --exp-name INT_REW_RND_SMALL 

# Entropy boost, small size
python ppo_experiments.py --use-entropy-loss --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map small --exp-name INT_REW_NONE_SMALL 

# RND boost, medium size
python ppo_experiments.py --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --track --plot-visitation-map --env-map medium --max-episode-steps 1200 --exp-name INT_REW_RND_MEDIUM 

# Entropy boost, medium size
python ppo_experiments.py --use-entropy-loss --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map medium --max-episode-steps 1200 --exp-name INT_REW_NONE_MEDIUM 

# RND boost, large size
python ppo_experiments.py --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --track --plot-visitation-map --env-map large --max-episode-steps 2400 --exp-name INT_REW_RND_LARGE 

# Model Disagreement boost, large size
python ppo_experiments.py --use-entropy-loss --use-model-disagreement-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --track --plot-visitation-map --env-map large --max-episode-steps 2400 --exp-name INT_REW_MD_LARGE 

# Entropy boost, large size
python ppo_experiments.py --use-entropy-loss --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map large --max-episode-steps 2400 --exp-name INT_REW_NONE_LARGE 


# ANT_MAZE
# RND boost, small maze
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map small --exp-name INT_REW_RND_SMALL 

# Entropy boost, small size
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map small --exp-name INT_REW_NONE_SMALL 

# RND boost, medium size
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --track --plot-visitation-map --env-map medium --max-episode-steps 1200 --exp-name INT_REW_RND_MEDIUM 

# Entropy boost, medium size
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map medium --max-episode-steps 1200 --exp-name INT_REW_NONE_MEDIUM 

# RND boost, large size
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --track --plot-visitation-map --env-map large --max-episode-steps 2400 --exp-name INT_REW_RND_LARGE 

# Model Disagreement boost, large size
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-model-disagreement-intrinsic-reward --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --track --plot-visitation-map --env-map large --max-episode-steps 2400 --exp-name INT_REW_MD_LARGE 

# Entropy boost, large size
python ppo_experiments.py --wandb-project-name cleanRL-exploration-antmaze --env-id AntMaze_UMaze-v4 --use-entropy-loss --use-rnd-metric --use-state-counting-metric --use-model-disagreement-metric --plot-visitation-map --track --env-map large --max-episode-steps 2400 --exp-name INT_REW_NONE_LARGE 


# MONTEZUMA_REVENGE
# RND boost
python ppo_experiments_montezuma.py --use-entropy-loss --use-rnd-intrinsic-reward --use-rnd-metric --use-model-disagreement-metric --track --capture-video --exp-name INT_REW_RND 

# Model Disagreement boost
python ppo_experiments_montezuma.py --use-entropy-loss --use-model-disagreement-intrinsic-reward --use-rnd-metric --use-model-disagreement-metric --track --capture-video --exp-name INT_REW_MD

# Entropy boost
python ppo_experiments_montezuma.py --use-entropy-loss --use-rnd-metric --use-model-disagreement-metric --track --capture-video --exp-name INT_REW_NONE