-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
194 lines (169 loc) · 6.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import tensorflow as tf
from PIL import Image
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_virtual_device_configuration(
gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)]
)
except RuntimeError as e:
print(e)
class_num = 41
id_to_word = {
0 : 'b',
1 : '7',
2 : 'e',
3 : '*',
4 : 'g',
5 : '0',
6 : 'i',
7 : 'c',
8 : 'k',
9 : '9',
10: '+',
11: 'z',
12: 'l',
13: 'r',
14: 'w',
15: '=',
16: '1',
17: 'n',
18: 'o',
19: '3',
20: 't',
21: 'x',
22: 'p',
23: '5',
24: '8',
25: 'v',
26: 'h',
27: '-',
28: 's',
29: 'd',
30: 'm',
31: '4',
32: 'j',
33: 'u',
34: 'q',
35: 'f',
36: 'a',
37: '/',
38: 'y',
39: '6',
40: '2',
}
resize_height, resize_width = 60, 216
class Mish(tf.keras.layers.Layer):
def forward(self, x):
return x * tf.nn.softplus(x).tanh()
class MyConv(tf.keras.layers.Layer):
def __init__(self, filter, kernel_size, strides):
super(MyConv, self).__init__()
self.cv = tf.keras.layers.Conv2D(filter, kernel_size=kernel_size, strides=strides, padding="same", use_bias=False)
self.bn = tf.keras.layers.BatchNormalization()
self.act = tf.nn.silu
def call(self, inputs):
return self.act(self.bn(self.cv(inputs)))
class MyBottleneck(tf.keras.layers.Layer):
def __init__(self, filter, shortcut=True):
super().__init__()
self.cv = MyConv(filter, kernel_size=3, strides=1)
self.add = shortcut
def forward(self, x):
return x + self.cv(x) if self.add else self.cv(x)
class MyCSPBottleneck(tf.keras.layers.Layer):
def __init__(self, filter, n=1, shortcut=True):
super().__init__()
self.cv1 = MyConv(filter, kernel_size=1, strides=1)
self.b = [ MyBottleneck(filter, shortcut) for _ in range(n) ]
self.cv3 = tf.keras.layers.Conv2D(filter, kernel_size=1, strides=1, use_bias=False)
self.bn = tf.keras.layers.BatchNormalization()
self.act = tf.nn.leaky_relu
self.cv4 = MyConv(filter, kernel_size=1, strides=1)
def forward(self, x):
y1 = self.cv1(x)
for b in self.b: y1 = b(y1)
y2 = self.cv3(x)
return self.cv4(self.act(self.bn(tf.concat([y1, y2], axis=1)), alpha=0.1))
class Detector(tf.keras.layers.Layer):
def __init__(self):
super(Detector, self).__init__()
self.denses = [ tf.keras.Sequential([
tf.keras.layers.Dense(64, activation=Mish()),
tf.keras.layers.Dense(32, activation=Mish()),
tf.keras.layers.Dense(16, activation=Mish()),
tf.keras.layers.Dense( 8, activation=Mish()),
]) for _ in range(4) ]
self.detect = tf.keras.layers.Dense(class_num, activation="softmax")
def call(self, x):
y = tf.concat([
tf.expand_dims(self.detect(self.denses[i](x)), axis=1) for i in range(4)
], axis=1)
return y
class MyModel(tf.keras.Model):
def __init__(self, dropout_rate):
super(MyModel, self).__init__()
self.cv = MyConv(32, kernel_size=3, strides=1)
self.cv_p1 = MyConv(64, kernel_size=3, strides=2) # (30, 108, 64)
self.bn_p1 = MyCSPBottleneck(64, 1)
self.cv_p2 = MyConv(128, kernel_size=3, strides=2) # (15, 54, 128)
self.bn_p2 = MyCSPBottleneck(128, 3)
self.cv_p3 = MyConv(256, kernel_size=3, strides=2) # ( 8, 27, 256)
self.bn_p3 = MyCSPBottleneck(256, 15)
self.cv_p4 = MyConv(512, kernel_size=3, strides=2) # ( 4, 14, 512)
self.bn_p4 = MyCSPBottleneck(512, 15)
self.cv_p5 = MyConv(1024, kernel_size=3, strides=2) # ( 2, 7, 1024)
self.bn_p5 = MyCSPBottleneck(1024, 7)
self.cv_p6 = MyConv(2048, kernel_size=3, strides=2) # ( 1, 4, 2048)
self.bn_p6 = MyCSPBottleneck(2048, 7)
self.flatten = tf.keras.layers.Flatten()
self.dropout = tf.keras.layers.Dropout(dropout_rate)
self.detector = Detector()
def call(self, x):
x = self.bn_p1(self.cv_p1(self.cv(x)))
x = self.bn_p2(self.cv_p2(x))
x = self.bn_p3(self.cv_p3(x))
x = self.bn_p4(self.cv_p4(x))
x = self.bn_p5(self.cv_p5(x))
x = self.bn_p6(self.cv_p6(x))
y = self.flatten(self.dropout(x))
y = self.detector(y)
return y
def process_image(img):
return Image.open(img).convert('L').resize((resize_width, resize_height))
def load_MyModel():
if "val_loss.h5" not in os.listdir("weights"):
print("\nPlease download the weights file (val_loss.h5) first at here:\n" +
"https://drive.google.com/file/d/16YL-915VVvY0bSMr2FiKhVnV19ipYF59/view?usp=sharing\n" +
"And make sure that you put it in the directory 'weights'.\n")
raise Exception
else:
dropout_rate = 0.93
# model = MyModel(dropout_rate)
model = tf.keras.Sequential([
tf.keras.layers.Conv2D( 32, 3, strides=1, padding="same", activation=tf.nn.silu),
tf.keras.layers.MaxPool2D(padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D( 64, 3, strides=1, padding="same", activation=tf.nn.silu),
tf.keras.layers.MaxPool2D(padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D( 128, 3, strides=1, padding="same", activation=tf.nn.silu),
tf.keras.layers.MaxPool2D(padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D( 256, 3, strides=1, padding="same", activation=tf.nn.silu),
tf.keras.layers.MaxPool2D(padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D( 512, 3, strides=1, padding="same", activation=tf.nn.silu),
tf.keras.layers.MaxPool2D(padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(1024, 3, strides=1, padding="same", activation=tf.nn.silu),
tf.keras.layers.MaxPool2D(padding="same"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(rate=dropout_rate),
Detector(),
])
model.build(input_shape=(None, resize_height, resize_width, 1))
model.load_weights("weights/val_loss.h5")
return model