Skip to content

Visual drag-and-drop platform for building, executing, and deploying LangGraph agentic workflows

Notifications You must be signed in to change notification settings

aiudalabs/flowAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FlowAI - Visual Agentic Workflow Builder

Build, execute, and deploy LangGraph agentic workflows through a visual drag-and-drop interface.

Features

  • 🎨 Visual Workflow Builder - Drag-and-drop interface powered by ReactFlow
  • 🤖 Multi-LLM Support - OpenAI, Anthropic, Google Gemini
  • 🔧 Extensible Nodes - LLMs, Tools, APIs, MCPs, Control Flow
  • Real-time Execution - Watch your workflows run with live visualization
  • 🚀 Deploy Anywhere - Export to Docker, Cloud Run, Lambda
  • 💾 State Management - Built on LangGraph with checkpointing and memory

Visual Overview

FlowAI Architecture

Quick Start

Prerequisites

  • Node.js 18+ and npm/yarn
  • Python 3.11+
  • Docker and Docker Compose
  • PostgreSQL 15+
  • Redis 7+

Development Setup

  1. Set up environment variables:
# Backend (.env in backend/ directory)
cp backend/.env.example backend/.env
# Edit backend/.env and add your API keys:
# OPENAI_API_KEY=your-key-here
# DATABASE_URL=postgresql://flowai:flowai@localhost:5432/flowai
# REDIS_URL=redis://localhost:6379/0
  1. Clone and install dependencies:
# Install frontend dependencies
cd frontend
npm install

# Install backend dependencies
cd ../backend
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
  1. Start infrastructure (PostgreSQL + Redis):
docker-compose up -d
  1. Run database migrations:
cd backend
alembic upgrade head
  1. Start development servers:
# Terminal 1 - Frontend
cd frontend
npm run dev

# Terminal 2 - Backend
cd backend
uvicorn app.main:app --reload
  1. Open your browser:

Project Structure

flowAI/
├── frontend/              # React + TypeScript + ReactFlow
│   ├── src/
│   │   ├── components/   # React components
│   │   ├── features/     # Feature modules (workflow, nodes, execution)
│   │   ├── lib/          # Utilities and configurations
│   │   ├── hooks/        # Custom React hooks
│   │   ├── types/        # TypeScript type definitions
│   │   └── App.tsx       # Main app component
│   └── package.json
│
├── backend/              # FastAPI + LangGraph
│   ├── app/
│   │   ├── api/          # API endpoints
│   │   ├── core/         # Core configuration
│   │   ├── models/       # Database models
│   │   ├── schemas/      # Pydantic schemas
│   │   ├── services/     # Business logic
│   │   │   ├── compiler/ # ReactFlow → LangGraph compiler
│   │   │   ├── executor/ # Workflow execution engine
│   │   │   └── nodes/    # Node type implementations
│   │   └── main.py       # FastAPI app
│   └── requirements.txt
│
├── docker-compose.yml    # Local development infrastructure
└── DEVELOPMENT_PLAN.md   # Detailed development roadmap

MVP Scope

The initial MVP includes:

  • ✅ ReactFlow canvas with zoom/pan controls
  • ✅ 5 essential node types:
    • Manual Trigger
    • OpenAI LLM
    • HTTP API Call
    • Conditional (if/else)
    • Output
  • ✅ Node configuration panel
  • ✅ Workflow save/load
  • ✅ LangGraph compilation
  • ✅ Real-time execution visualization
  • ✅ Execution history
  • Dynamic Input Forms - Auto-detect variables ({{var}}) and show input forms
  • Beautiful Output Viewer - Formatted, JSON, and Raw views with Markdown support
  • WebSocket Live Updates - Real-time execution logs and node status updates

Tech Stack

  • Frontend: React 18, TypeScript, ReactFlow, Tailwind CSS, shadcn/ui
  • Backend: FastAPI, LangGraph, LangChain, SQLAlchemy
  • Database: PostgreSQL, Redis
  • Deployment: Docker, Kubernetes

Contributing

See DEVELOPMENT_PLAN.md for the detailed roadmap and architecture.

License

MIT