forked from ucscCancer/icgc_rnaseq_align
-
Notifications
You must be signed in to change notification settings - Fork 7
/
star_align.py
executable file
·527 lines (458 loc) · 23.5 KB
/
star_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#!/usr/bin/env python
import os
import sys
import re
import string
import tempfile
import subprocess
import argparse
import shutil
import lxml.etree as etree
import fnmatch
def walk_dir(base, pattern):
files = []
for root, dirnames, filenames in os.walk(base):
for fname in fnmatch.filter(filenames, pattern):
files.append(os.path.join(root, fname))
return files
def scan_workdir(base):
### scan for paired-end files
#############################
### unzipped fastq input
fastq_files = walk_dir(base, "*_read[12]_*fastq")
if len(fastq_files):
o = {}
for i in sorted(fastq_files):
basename = re.sub(r'_read[12]', '', i)
try:
o[basename].append(i)
except KeyError:
o[basename] = [i]
if not all( (len(i) == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'cat', list( (os.path.basename(i), o[i][0], o[i][1]) for i in o.keys()), 'PE')
### unzipped fastq input
fastq_files = walk_dir(base, "*_R[12]_001.fastq")
if len(fastq_files):
o = {}
for i in fastq_files:
basename = re.sub(r'_R[12]_001.fastq$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'cat', list( (os.path.basename(i), "%s_R1_001.fastq" % i,"%s_R2_001.fastq" % i) for i in o.keys()), 'PE')
### unzipped fastq input
fastq_files = walk_dir(base, "*_[12].fastq")
if len(fastq_files):
o = {}
for i in fastq_files:
basename = re.sub(r'_[12].fastq$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'cat', list( (os.path.basename(i), "%s_1.fastq" % i,"%s_2.fastq" % i) for i in o.keys()), 'PE')
### unzipped fastq input
fastq_files = walk_dir(base, "*[.][12].fastq")
if len(fastq_files):
o = {}
for i in fastq_files:
basename = re.sub(r'[.][12].fastq$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'cat', list( (os.path.basename(i), "%s.1.fastq" % i,"%s.2.fastq" % i) for i in o.keys()), 'PE')
### unzipped fastq input
fastq_files = walk_dir(base, "*.fastq[12]")
if len(fastq_files):
o = {}
for i in fastq_files:
basename = re.sub(r'.fastq[12]$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'cat', list( (os.path.basename(i), "%s.fastq1" % i,"%s.fastq2" % i) for i in o.keys()), 'PE')
### unzipped txt input
fastq_files = walk_dir(base, "*_[12]_sequence.txt")
if len(fastq_files):
o = {}
for i in fastq_files:
basename = re.sub(r'_[12]_sequence.txt$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'cat', list( (os.path.basename(i), "%s_1_sequence.txt" % i,"%s_2_sequence.txt" % i) for i in o.keys()), 'PE')
### gzipped input
fastq_gz_files = walk_dir(base, "*_[12].fastq.gz")
if len(fastq_gz_files):
o = {}
for i in fastq_gz_files:
basename = re.sub(r'_[12].fastq.gz$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'zcat', list( (os.path.basename(i), "%s_1.fastq.gz" % i,"%s_2.fastq.gz" % i) for i in o.keys()), 'PE')
### bzipped input
fastq_bz_files = walk_dir(base, "*_[12].fastq.bz")
if len(fastq_gz_files):
o = {}
for i in fastq_gz_files:
basename = re.sub(r'_[12].fastq.bz$', '', i)
o[basename] = o.get(basename, 0) + 1
if not all( (i == 2 for i in o.values())):
raise Exception("Missing Pair")
return ( 'bzcat', list( (os.path.basename(i), "%s_1.fastq.bz" % i,"%s_2.fastq.bz" % i) for i in o.keys()), 'PE')
### scan for single-end files
#############################
### unzipped input
fastq_files = walk_dir(base, "*.fastq")
if len(fastq_files):
return ( 'cat', list( (os.path.basename(re.sub(r'.fastq$', '', i)), i) for i in fastq_files), 'SE')
### unzipped input
fastq_files = walk_dir(base, "*.fq")
if len(fastq_files):
return ( 'cat', list( (os.path.basename(re.sub(r'.fq$', '', i)), i) for i in fastq_files), 'SE')
### gzipped input
fastq_files = walk_dir(base, "*.fastq.gz")
if len(fastq_files):
return ( 'zcat', list( (os.path.basename(re.sub(r'.fastq.gz$', '', i)), i) for i in fastq_files), 'SE')
### bzipped input
fastq_files = walk_dir(base, "*.fastq.bz")
if len(fastq_files):
return ( 'bzcat', list( (os.path.basename(re.sub(r'.fastq.bz$', '', i)), i) for i in fastq_files), 'SE')
raise Exception("Unable to determine input type")
def spreadsheet2dict(spreadFile):
"""
Takes the filename of the spreadsheet, loads the data and organizes
it into a dictionary"""
spreadDict = {}
key2field = {}
for l, line in enumerate(open(spreadFile)):
sl = line.strip().split('\t')
if l == 0:
for k, key in enumerate(sl):
key2field[key] = k
else:
spreadDict[sl[key2field['analysis_id']]] = sl
return (spreadDict, key2field)
def spreadsheet2RGdict(spreadFile, analysisID):
"""Compiles a read group dictionary from the information
in the spreadFile for the given analysisID."""
sD, k2f = spreadsheet2dict(spreadFile)
try:
rec = sD[analysisID]
except KeyError:
raise Exception('Information for analysis ID %s could not be found in %s' % (analysisID, spreadFile))
### build dictionary
RG_dict = { 'ID' : '%s:%s' % (rec[k2f['center_name']], analysisID),
'CN' : rec[k2f['center_name']],
'LB' : 'RNA-Seq:%s:%s' % (rec[k2f['center_name']], rec[k2f['lib_id']]),
'PL' : rec[k2f['platform']],
'PM' : rec[k2f['platform_model']],
'SM' : rec[k2f['specimen_id']],
'SI' : rec[k2f['submitted_sample_id']]}
files = []
if 'fastq_files' in k2f:
if not rec[k2f['fastq_files']].strip(' ') in ['N/A', 'NA', 'no', '']:
files = rec[k2f['fastq_files']].strip(' ').split(' ')
return (RG_dict, files)
def xml2RGdict(xmlfile):
### read xml in
root = etree.parse(xmlfile)
rtree = root.find('Result')
### analysis_id
analysis_id = rtree.find('analysis_id').text
center = rtree.find('center_name').text
try:
date_string = rtree.find('analysis_xml/ANALYSIS_SET/ANALYSIS').attrib['analysis_date']
except KeyError:
date_string = rtree.find('run_xml/RUN_SET/RUN').attrib['run_date']
sample_id = rtree.find('sample_id').text
submitter_id = rtree.find('legacy_sample_id').text
library_id = rtree.find('experiment_xml/EXPERIMENT_SET/EXPERIMENT').attrib['alias']
platform = rtree.find('experiment_xml/EXPERIMENT_SET/EXPERIMENT/PLATFORM').getchildren()[0].tag
instrument = rtree.find('experiment_xml/EXPERIMENT_SET/EXPERIMENT/PLATFORM/*/INSTRUMENT_MODEL').text
### build dictionary
RG_dict = { 'ID' : '%s:%s' % (center, analysis_id),
'CN' : center,
'DT' : date_string,
'LB' : 'RNA-Seq:%s:%s' % (center, library_id),
'PL' : platform,
'PM' : instrument,
'SM' : sample_id,
'SI' : submitter_id}
return RG_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ICGC RNA-Seq alignment wrapper for STAR alignments.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, usage='%(prog)s [options]', add_help=False)
required = parser.add_argument_group("Required input parameters")
required.add_argument("--genomeDir", default=None, help="Directory containing the reference genome index", required=True)
required.add_argument("--tarFileIn", default=None, help="Input file containing the sequence information", required=True)
optional = parser.add_argument_group("optional input parameters")
optional.add_argument("--out", default="out.bam", help="Name of the output BAM file")
optional.add_argument("--workDir", default="./", help="Work directory")
optional.add_argument("--metaDataTab", default=None, help="File containing metadata for the alignment header")
optional.add_argument("--analysisID", default=None, help="Analysis ID to be considered in the metadata file")
optional.add_argument("--keepJunctions", default=False, action='store_true', help="keeps the junction file as {--out}.junctions")
optional.add_argument("--useTMP", default=None, help="environment variable that is used as prefix for temprary data")
optional.add_argument("-h", "--help", action='store_true', help="show this help message and exit")
star = parser.add_argument_group("STAR input parameters")
star.add_argument("--runThreadN", type=int, default=4, help="Number of threads")
star.add_argument("--outFilterMultimapScoreRange", type=int, default=1, help="outFilterMultimapScoreRange")
star.add_argument("--outFilterMultimapNmax", type=int, default=20, help="outFilterMultimapNmax")
star.add_argument("--outFilterMismatchNmax", type=int, default=10, help="outFilterMismatchNmax")
star.add_argument("--alignIntronMax", type=int, default=500000, help="alignIntronMax")
star.add_argument("--alignMatesGapMax", type=int, default=1000000, help="alignMatesGapMax")
star.add_argument("--sjdbScore", type=int, default=2, help="sjdbScore")
star.add_argument("--limitBAMsortRAM", type=int, default=0, help="limitBAMsortRAM")
star.add_argument("--alignSJDBoverhangMin", type=int, default=1, help="alignSJDBoverhangMin")
star.add_argument("--genomeLoad", default="NoSharedMemory", help="genomeLoad")
star.add_argument("--genomeFastaFiles", default=None, help="genome sequence in fasta format to rebuild index")
star.add_argument("--outFilterMatchNminOverLread", type=float, default=0.33, help="outFilterMatchNminOverLread")
star.add_argument("--outFilterScoreMinOverLread", type=float, default=0.33, help="outFilterScoreMinOverLread")
star.add_argument("--twopass1readsN", type=int, default=-1, help="twopass1readsN (-1 means all reads are used for remapping)")
star.add_argument("--sjdbOverhang", type=int, default=100, help="sjdbOverhang (only necessary for two-pass mode)")
star.add_argument("--outSAMstrandField", default="intronMotif", help="outSAMstrandField")
star.add_argument("--outSAMattributes", default=["NH", "HI", "NM", "MD", "AS", "XS"], help="outSAMattributes")
star.add_argument("--outSAMunmapped", default="Within", help="outSAMunmapped")
star.add_argument("--outSAMtype", default=["BAM", "SortedByCoordinate"], help="outSAMtype")
star.add_argument("--outSAMheaderHD", default=["@HD", "VN:1.4"], help="outSAMheaderHD")
star.add_argument("--outSAMattrRGline", default=None, help="RG attribute line submitted to outSAMattrRGline")
star.add_argument("--outSAMattrRGfile", default=None, help="File containing the RG attribute line submitted to outSAMattrRGline")
star.add_argument("--outSAMattrRGxml", default=None, help="XML-File in TCGA format to compile RG attribute line")
### check completeness of command line inputs
if len(sys.argv) < 2:
parser.print_help()
sys.exit(0)
args = parser.parse_args()
### some sanity checks on command line parameters
if args.metaDataTab is not None:
if not os.path.exists(args.metaDataTab):
raise Exception("File provided via --metaDataTab does not exist\nFile: %s" % args.metaDataTab)
if args.analysisID is None:
raise Exception("When providing information in a metadata file, a value for --analysisID is required")
if args.outSAMattrRGxml is not None and not os.path.exists(args.outSAMattrRGxml):
raise Exception("File provided via --outSAMattrRGxml does not exist\nFile: %s" % args.outSAMattrRGxml)
if args.outSAMattrRGfile is not None and not os.path.exists(args.outSAMattrRGfile):
raise Exception("File provided via --outSAMattrRGfile does not exist\nFile: %s" % args.outSAMattrRGfile)
### handling of input file (unpacking, etc. )
if args.useTMP is not None:
workdir = tempfile.mkdtemp(dir=os.environ[args.useTMP], prefix="star_inputdir_")
else:
workdir = tempfile.mkdtemp(dir=args.workDir, prefix="star_inputdir_")
if args.tarFileIn.endswith(".gz"):
tarcmd = "tar xvzf %s -C %s" % (args.tarFileIn, workdir)
elif args.tarFileIn.endswith(".bz"):
tarcmd = "tar xvjf %s -C %s" % (args.tarFileIn, workdir)
elif args.tarFileIn.endswith(".tar"):
tarcmd = "tar xvf %s -C %s" % (args.tarFileIn, workdir)
elif args.tarFileIn.endswith(".sra"):
tarcmd = "fastq-dump --gzip --split-3 --outdir %s %s" % (workdir, args.tarFileIn)
else:
raise Exception("Unknown input file extension for file %s" % (args.tarFileIn))
subprocess.check_call(tarcmd, shell=True)
### collect fastq information from extraction dir
align_sets = scan_workdir(os.path.abspath(workdir))
### process read group information
files = []
if args.metaDataTab is not None:
(RG_dict, files_tmp) = spreadsheet2RGdict(args.metaDataTab, args.analysisID)
files.extend(files_tmp)
elif args.outSAMattrRGxml is not None:
RG_dict = xml2RGdict(args.outSAMattrRGxml)
elif args.outSAMattrRGline is not None:
RG_dict = dict([(x.split(':', 1)[0], x.split(':', 1)[1]) for x in args.outSAMattrRGline.split()])
elif args.outSAMattrRGfile is not None:
_fh = open(args.outSAMattrRGfile, 'r')
RG_dict = dict([(x.split(':', 1)[0], x.split(':', 1)[1]) for x in _fh.next().strip().split()])
_fh.close()
else:
RG_dict = {'ID' : '', 'SM' : ''}
### post-process RG-dict to comply with STAR conventions
for key in RG_dict:
sl = RG_dict[key].split(' ')
if len(sl) > 1:
RG_dict[key] = '"%s"' % RG_dict[key]
### use list of fastq input files for whitelisting
if len(files) > 0:
align_sets = (align_sets[0], [x for x in align_sets[1] if (re.sub('(_[12]){,1}.fastq(.(gz|bz2|bz))*', '', os.path.basename(x[1])) in files)], align_sets[2])
if len(align_sets[1]) == 0:
print >> sys.stderr, 'All input files have been filtered out - no input remaining. Terminating.'
sys.exit()
### use filename stub as read group label
RG_dict['RG'] = []
for fn in [x[1] for x in align_sets[1]]:
fn_stub = re.sub('(_[12]){,1}.fastq(.(gz|bz2|bz))*', '', os.path.basename(fn))
fn_stub = re.sub('(_[12]){,1}_sequence.txt(.(gz|bz2|bz))*', '', fn_stub)
fn_stub = re.sub('_read[12]', '', fn_stub)
fn_stub = re.sub('_R[12]_001$', '', fn_stub)
RG_dict['RG'].append(fn_stub)
### prepare template string
if align_sets[2] == 'PE':
read_str = '${fastq_left} ${fastq_right}'
else:
read_str = '${fastq_left}'
### simulate two pass alignment until STAR fully implements this
if args.twopass1readsN != 0:
### run first round of alignments and only record junctions
align_template_str_1st = """STAR \
--genomeDir ${genomeDir} --readFilesIn %s \
--runThreadN ${runThreadN} \
--outFilterMultimapScoreRange ${outFilterMultimapScoreRange} \
--outFilterMultimapNmax ${outFilterMultimapNmax} \
--outFilterMismatchNmax ${outFilterMismatchNmax} \
--alignIntronMax ${alignIntronMax} \
--alignMatesGapMax ${alignMatesGapMax} \
--sjdbScore ${sjdbScore} \
--alignSJDBoverhangMin ${alignSJDBoverhangMin} \
--genomeLoad ${genomeLoad} \
--readFilesCommand ${readFilesCommand} \
--outFilterMatchNminOverLread ${outFilterMatchNminOverLread} \
--outFilterScoreMinOverLread ${outFilterScoreMinOverLread} \
--sjdbOverhang ${sjdbOverhang} \
--outSAMstrandField ${outSAMstrandField} \
--outSAMtype None \
--outSAMmode None""" % read_str
if args.twopass1readsN > 0:
align_template_str_1st += " --readMapNumber %i" % args.twopass1readsN
cmd = string.Template(align_template_str_1st).safe_substitute({
'genomeDir' : os.path.abspath(args.genomeDir),
'runThreadN' : args.runThreadN,
'outFilterMultimapScoreRange' : args.outFilterMultimapScoreRange,
'outFilterMultimapNmax' : args.outFilterMultimapNmax,
'outFilterMismatchNmax' : args.outFilterMismatchNmax,
'fastq_left' : ','.join([os.path.join(x[0], x[1]) for x in align_sets[1]]),
'alignIntronMax' : args.alignIntronMax,
'alignMatesGapMax': args.alignMatesGapMax,
'sjdbScore': args.sjdbScore,
'alignSJDBoverhangMin' : args.alignSJDBoverhangMin,
'genomeLoad' : args.genomeLoad,
'readFilesCommand' : align_sets[0],
'outFilterMatchNminOverLread' : args.outFilterMatchNminOverLread,
'outFilterScoreMinOverLread' : args.outFilterScoreMinOverLread,
'sjdbOverhang' : args.sjdbOverhang,
'outSAMstrandField' : args.outSAMstrandField
})
if align_sets[2] == 'PE':
cmd = string.Template(cmd).substitute({
'fastq_right' : ','.join([os.path.join(x[0], x[2]) for x in align_sets[1]])
})
### take temp directory from environment variable
if args.useTMP is not None:
align_dir_1st = os.path.abspath( tempfile.mkdtemp(dir=os.environ[args.useTMP], prefix="star_aligndir_1st_") )
genome_dir_1st = os.path.abspath( tempfile.mkdtemp(dir=os.environ[args.useTMP], prefix="star_genomedir_1st_") )
else:
align_dir_1st = os.path.abspath( tempfile.mkdtemp(dir=args.workDir, prefix="star_aligndir_1st_") )
genome_dir_1st = os.path.abspath( tempfile.mkdtemp(dir=args.workDir, prefix="star_genomedir_1st_") )
print "Running", cmd
subprocess.check_call(cmd, shell=True, cwd=align_dir_1st)
### build index using provided genome fasta as well as junctions from first run
cmd = """STAR --runMode genomeGenerate --genomeDir %s \
--genomeFastaFiles %s \
--sjdbOverhang %i \
--runThreadN %i \
--sjdbFileChrStartEnd %s""" % (genome_dir_1st, args.genomeFastaFiles, args.sjdbOverhang, args.runThreadN, os.path.join(align_dir_1st, 'SJ.out.tab'))
print "Running", cmd
subprocess.check_call(cmd, shell=True, cwd=align_dir_1st)
### replace index for the second run with the one currently built
genome_dir = genome_dir_1st
else:
genome_dir = os.path.abspath(args.genomeDir)
align_template_str = """STAR \
--genomeDir ${genomeDir} --readFilesIn %s \
--runThreadN ${runThreadN} \
--outFilterMultimapScoreRange ${outFilterMultimapScoreRange} \
--outFilterMultimapNmax ${outFilterMultimapNmax} \
--outFilterMismatchNmax ${outFilterMismatchNmax} \
--alignIntronMax ${alignIntronMax} \
--alignMatesGapMax ${alignMatesGapMax} \
--sjdbScore ${sjdbScore} \
--alignSJDBoverhangMin ${alignSJDBoverhangMin} \
--genomeLoad ${genomeLoad} \
--limitBAMsortRAM ${limitBAMsortRAM} \
--readFilesCommand ${readFilesCommand} \
--outFilterMatchNminOverLread ${outFilterMatchNminOverLread} \
--outFilterScoreMinOverLread ${outFilterScoreMinOverLread} \
--sjdbOverhang ${sjdbOverhang} \
--outSAMstrandField ${outSAMstrandField} \
--outSAMattributes ${outSAMattributes} \
--outSAMunmapped ${outSAMunmapped} \
--outSAMtype ${outSAMtype} \
--outSAMheaderHD ${outSAMheaderHD}""" % read_str
#--twopass1readsN ${twopass1readsN} \
cmd = string.Template(align_template_str).safe_substitute({
'genomeDir' : genome_dir,
'runThreadN' : args.runThreadN,
'fastq_left' : ','.join([os.path.join(x[0], x[1]) for x in align_sets[1]]), #os.path.abspath(pair[1]),
'outFilterMultimapScoreRange' : args.outFilterMultimapScoreRange,
'outFilterMultimapNmax' : args.outFilterMultimapNmax,
'outFilterMismatchNmax' : args.outFilterMismatchNmax,
'alignIntronMax' : args.alignIntronMax,
'alignMatesGapMax': args.alignMatesGapMax,
'sjdbScore': args.sjdbScore,
'alignSJDBoverhangMin' : args.alignSJDBoverhangMin,
'genomeLoad' : args.genomeLoad,
'limitBAMsortRAM' : args.limitBAMsortRAM,
'readFilesCommand' : align_sets[0],
'outFilterMatchNminOverLread' : args.outFilterMatchNminOverLread,
'outFilterScoreMinOverLread' : args.outFilterScoreMinOverLread,
'sjdbOverhang' : args.sjdbOverhang,
'outSAMstrandField' : args.outSAMstrandField,
'outSAMattributes' : " ".join(args.outSAMattributes),
'outSAMunmapped' : args.outSAMunmapped,
'outSAMtype' : " ".join(args.outSAMtype),
'outSAMheaderHD' : " ".join(args.outSAMheaderHD)
})
# 'twopass1readsN' : args.twopass1readsN,
if align_sets[2] == 'PE':
cmd = string.Template(cmd).substitute({
'fastq_right' : ','.join([os.path.join(x[0], x[2]) for x in align_sets[1]]) # os.path.abspath(pair[2]),
})
### convert RG_dict into formatted RG line
RG_line = []
for r, readgroup in enumerate(align_sets[1]):
if 'RG' in RG_dict:
tmp = 'ID:%s:%s' % (RG_dict['ID'], RG_dict['RG'][r])
else:
tmp = 'ID:%s:%s' % (RG_dict['ID'], readgroup[0])
if len(RG_dict) > 1:
tmp += '\t'
tmp += '\t'.join(['%s:%s' % (key, RG_dict[key]) for key in RG_dict if key not in ['ID', 'RG', 'SI']])
### add read group label
if 'RG' in RG_dict and 'CN' in RG_dict:
tmp += '\tPU:%s:%s' % (RG_dict['CN'], RG_dict['RG'][r])
RG_line.append('%s' % tmp)
cmd += ' --outSAMattrRGline %s' % ' , '.join(RG_line)
### handle comment lines
comment_file = None
if 'SI' in RG_dict:
if args.useTMP is not None:
comment_file = os.path.abspath( tempfile.mkstemp(dir=os.environ[args.useTMP], prefix="star_comments_")[1] )
else:
comment_file = os.path.abspath( tempfile.mkstemp(dir=args.workDir, prefix="star_comments_")[1] )
fd_com = open(comment_file, 'w')
fd_com.write('@CO\tsubmitter_sample_id:%s\n' % RG_dict['SI'])
fd_com.flush()
fd_com.close()
cmd += ' --outSAMheaderCommentFile %s' % comment_file
### take temp directory from environment variable
if args.useTMP is not None:
align_dir = os.path.abspath( tempfile.mkdtemp(dir=os.environ[args.useTMP], prefix="star_aligndir_") )
else:
align_dir = os.path.abspath( tempfile.mkdtemp(dir=args.workDir, prefix="star_aligndir_") )
print "Running", cmd
subprocess.check_call(cmd, shell=True, cwd=align_dir)
### move output file
if 'BAM' in args.outSAMtype and 'SortedByCoordinate' in args.outSAMtype:
shutil.move(os.path.join(align_dir, 'Aligned.sortedByCoord.out.bam'), args.out)
elif 'BAM' in args.outSAMtype and 'Unsorted' in args.outSAMtype:
shutil.move(os.path.join(align_dir, 'Aligned.out.bam'), args.out)
else:
raise Exception('STAR output file could not be determined')
### move junctions if to be kept
if args.keepJunctions:
shutil.move(os.path.join(align_dir, 'SJ.out.tab'), args.out + '.junctions')
### clean up working directory
shutil.rmtree(workdir)
shutil.rmtree(align_dir)
if args.twopass1readsN != 0:
shutil.rmtree(align_dir_1st)
shutil.rmtree(genome_dir_1st)