-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlogdata-data2report.py
314 lines (209 loc) · 9.28 KB
/
logdata-data2report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""
Work-in-progress!!!
Reads the logdata-data json files generated by the Fronius Push Service.
Extracts some data and generates a html report
"""
import json
import csv
import collections
import matplotlib.pyplot as plt
from pprint import pprint
import sys, os
from datetime import date
from calendar import monthrange
WP = 4060
YEAR = 2017
PRODUCED = 0
TOTAL_CONSUMED = 1
DIRECT_CONSUMED = 2
SUPPLIED = 3
SPECIFIC_YIELD = 4
WAC_SUB_PRODUCED = 0
WAC_MINUS = 1 # supplied
WAC_PLUS = 2 # purchased
def get_data_from_file(filename):
"""
returns data for one day from a logdata-data file as a list of:
[Inverter EnergyReal_WAC_Sum_Produced Wh per day
Meter EnergyReal_WAC_Minus Wh per day
Meter EnergyReal_WAC_Plus Wh per day]
"""
if not os.path.exists(filename):
print("File {} not found".format(filename))
return []
#print("Processing file {}".format(filename))
with open(filename) as data_file:
data = json.load(data_file)
#pprint(data)
sum_produced = 0.0
wac_sum_produced = data['Body']['inverter/1']['Data']['EnergyReal_WAC_Sum_Produced']['Values']
for key, value in wac_sum_produced.items():
sum_produced = sum_produced + value
#print("Sum produced {:.2f} Wh".format(sum_produced))
meter_minus_data = data['Body']['meter:16220118']['Data']['EnergyReal_WAC_Minus_Absolute']['Values']
if "0" in meter_minus_data:
meter_minus_start_value = meter_minus_data["0"]
else:
meter_minus_start_value = meter_minus_data["1"]
print("We have the curious case of a missing secound 0 of the day in the data, we used second 1 instead")
meter_minus_end_value = meter_minus_data["85500"]
meter_minus = meter_minus_end_value - meter_minus_start_value
#print("Meter minus {} Wh".format(meter_minus))
meter_plus_data = data['Body']['meter:16220118']['Data']['EnergyReal_WAC_Plus_Absolute']['Values']
if "0" in meter_plus_data:
meter_plus_start_value = meter_plus_data["0"]
else:
meter_plus_start_value = meter_plus_data["1"]
meter_plus_end_value = meter_plus_data["85500"]
meter_plus = meter_plus_end_value - meter_plus_start_value
#print("Meter plus {} Wh".format(meter_plus))
return [sum_produced, meter_minus, meter_plus]
def get_month_data(year, month, start_day, end_day):
"""
returns a list of day datas with additional computed values
"""
path = "drosselweg-logdata"
days = range(start_day, end_day + 1)
month_data = []
for day in days:
filename = "logdata-data" + str(year) + str(month).zfill(2) + str(day).zfill(2) + "235000.json"
file = os.path.join(path, filename)
day_data = compute_additional_day_data(get_data_from_file(file))
month_data.append(day_data)
sum_produced = 0
for day in month_data:
sum_produced = sum_produced + day[0]
#print("{}/{} Specific yield {}".format(year, month, day[4]))
print("{}/{} Sum produced {} kWh".format(year, month,sum_produced/1000))
specific_yield_month = sum_produced / len(days) / WP
print("{}/{} Specific average yield per day in this month {}".format(year, month, specific_yield_month))
return month_data
def compute_additional_day_data(day_data):
"""
Takes day data and computes additional data based on it, returns it as a list of:
[produced, (WAC_Sum_Produced)
total_consumed, (WAC_Plus + WAC_Sum_Produced - WAC_Minus)
direct_consumed, (WAC_Sum_Produced - WAC_Minus),
supplied, (WAC_Minus)
specific_yield (WAC_Sum_Produced / Wp)
]
"""
if len(day_data) != 3:
return [0, 0, 0, 0, 0]
produced = day_data[WAC_SUB_PRODUCED]
total_consumed = day_data[WAC_PLUS] + day_data[WAC_SUB_PRODUCED] - day_data[WAC_MINUS]
direct_consumed = day_data[WAC_SUB_PRODUCED] - day_data[WAC_MINUS]
supplied = day_data[WAC_MINUS]
specific_yield = day_data[WAC_SUB_PRODUCED] / WP
return [produced, total_consumed, direct_consumed, supplied, specific_yield]
def get_year_data(year):
year_data = []
start_date = date(year, 1, 1)
end_date = date(year, 12, 31)
for month in range(start_date.month, end_date.month + 1):
if month > date.today().month:
break
start_day = 1
# if we run the report on the firt day of the month, we have no data for this month yet, so no need to
# proceed
if start_day == date.today().day and month == date.today().month and year == date.today().year:
break
weekday, number_of_days = monthrange(start_date.year, month)
end_day = number_of_days
if month == date.today().month and end_day >= date.today().day:
end_day = date.today().day - 1
year_data.append( get_month_data(start_date.year, month, start_day, end_day) )
return year_data
def compute_year_values(year_data):
produced = 0
total_consumed = 0
direct_consumed = 0
supplied = 0
for month in year_data:
for day in month:
produced = produced + day[PRODUCED]
total_consumed = total_consumed + day[TOTAL_CONSUMED]
direct_consumed = direct_consumed + day[DIRECT_CONSUMED]
supplied = supplied + day[SUPPLIED]
print("Year: Produced: {:8.1f} kWh".format(produced/1000))
print("Year: Total consumed: {:8.1f} kWh".format(total_consumed/1000))
print("Year: Direct consumed: {:8.1f} kWh".format(direct_consumed/1000))
print("Year: Bought: {:8.1f} kWh".format((total_consumed - direct_consumed)/1000))
print("Year: Supplied: {:8.1f} kWh".format(supplied/1000))
print("Year: Autarky %: {:8.1f} %".format(direct_consumed/total_consumed*100))
print("Year: Direct consumed %: {:8.1f} %".format(direct_consumed/produced*100))
print("Year: Specific yield: {:8.1f} kWh/kWp".format( (produced/1000)/(WP/1000)))
def main(argv):
#get_data_from_file("examples/logdata-data20170304235000.json")
#get_month_data(2017, 1, 1, 31)
#get_month_data(2017, 2, 1, 28)
year_data = get_year_data(YEAR)
compute_year_values(year_data)
def to_time(seconds):
seconds = int(seconds) + 7200
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
time = '{:02d}:{:02d}'.format(h, m)
#print(time)
return time
def old():
with open('examples/logdata-data20160913235000.json') as data_file:
data = json.load(data_file)
#pprint(data)
#print(data['Body']['inverter/1']['Data']['Current_DC_String_1']['Values'])
c_dc_1_values = data['Body']['inverter/1']['Data']['Current_DC_String_1']['Values']
# Dictionaraies, returned by the json reader, have no order.
# So, convert it to a list of key/value tupels (.items()) and
# sort it with sorted(), using a lambda function to convert the key/first tupel item to an integer
# so that the sorting is based on numbers not text
c_dc_1_values_ordered = sorted(c_dc_1_values.items(), key=lambda x: int(x[0]) )
# no header text for the time column so that excel treats it as x axis values
fieldnames = ['', 'Current_DC_String_1']
with open('examples/c_dc_1.csv', 'w') as csv_file:
writer = csv.writer(csv_file, dialect='excel-tab')
writer.writerow(fieldnames)
for key, value in c_dc_1_values_ordered:
writer.writerow([key, value])
wac_plus_abs = data['Body']['meter:16220118']['Data']['EnergyReal_WAC_Plus_Absolute']['Values']
wac_plus_abs_ordered = sorted(wac_plus_abs.items(), key=lambda x: int(x[0]) )
wac_plus_diff = []
previous_value = int(wac_plus_abs_ordered[0][1])
for key, value in wac_plus_abs_ordered:
diff = int(value) - previous_value
wac_plus_diff.append( (to_time(key), float(diff)/1000) )
previous_value = int(value)
fieldnames = ['', 'EnergyReal_WAC_Plus_Absolute']
with open('examples/wac_plus_diff.csv', 'w') as csv_file:
writer = csv.writer(csv_file, dialect='excel-tab')
writer.writerow(fieldnames)
for key, value in wac_plus_diff:
writer.writerow([key, value])
wac_minus_abs = data['Body']['meter:16220118']['Data']['EnergyReal_WAC_Minus_Absolute']['Values']
wac_minus_abs_ordered = sorted(wac_minus_abs.items(), key=lambda x: int(x[0]) )
wac_minus_diff = []
previous_value = int(wac_minus_abs_ordered[0][1])
for key, value in wac_minus_abs_ordered:
diff = int(value) - previous_value
wac_minus_diff.append( (to_time(key), float(diff)/1000) )
previous_value = int(value)
fieldnames = ['', 'EnergyReal_WAC_Minus_Absolute']
with open('examples/wac_minus_diff.csv', 'w') as csv_file:
writer = csv.writer(csv_file, dialect='excel-tab')
writer.writerow(fieldnames)
for key, value in wac_minus_diff:
writer.writerow([key, value])
plus_keys = []
plus_values = []
previous_value = int(wac_plus_abs_ordered[0][1])
for key, value in wac_plus_abs_ordered:
diff = int(value) - previous_value
previous_value = int(value)
plus_keys.append( int(key) )
plus_values.append( float(diff) )
print(plus_keys)
print(plus_values)
plt.plot(plus_keys, plus_values)
#plt.show()
plt.savefig('examples/plot.png', bbox_inches='tight')
if __name__ == "__main__":
main(sys.argv)