-
Notifications
You must be signed in to change notification settings - Fork 0
/
whiffrateAnalysis.py
801 lines (553 loc) · 25.6 KB
/
whiffrateAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
#%%
### IMPORTING LIBRARIES TO USE, READING IN DATA ###
import pandas as pd
import numpy as np
import seaborn as sns
from scipy import stats
from collections import Counter
import statsmodels.api as sm
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
whiffData = pd.read_csv('PitcherXData.csv')
#%%
### INITIAL DATA EXPLORATION AND CLEANING ###
## Identify categorical variables and numeric variables
numericCols = whiffData.select_dtypes(include=np.number).columns
categoricalCols = list(set(whiffData.columns) - set(numericCols))
print(numericCols)
print(categoricalCols)
## Detect Null values
whiffNulls = whiffData[whiffData.isnull().any(axis=1)]
## Confirm that Null values do not have significant skew before dropping null rows
## We want to avoid a situation where the values in the null rows significantly change the overall data
for col in numericCols:
originalMean = whiffData[col].mean()
nullMean = whiffNulls[col].mean()
print(col, ': ', originalMean, ' ', nullMean)
for col in categoricalCols:
originalSet = set(whiffData[col])
nullSet = set(whiffNulls[col])
print(col)
print(originalSet)
print(nullSet)
## Worth looking into InducedVertBreak and HorzBreak from first glance
## Induced vertical break has a standard deviation of around 6.5 - the null rows' aggregate InducedVertBreak is within 1 std of the main set
whiffData['InducedVertBreak'].std()
## HorzBreak is over one standard deviation, but not by much. It is close, but acceptable to drop - no skew!
whiffData['HorzBreak'].std()
## All the numeric columns look like they display no skew when comparing the null rows and the non null rows (main set)
whiffData = whiffData.dropna()
#%%
### OUTLIER DETECTION AND HANDLING ###
## For numeric variables, do outlier detection
whiffNumeric = whiffData[numericCols]
for col in numericCols:
outliers = whiffNumeric[~(np.abs(whiffNumeric[col] - whiffNumeric[col].mean()) < (3 *whiffNumeric[col].std()))]
if len(outliers) > 0:
print(col, len(outliers))
## After a cursory analysis of the columns with outliers (looking at the range and standard deviation), only SpinRate is of note
## Problem: several zeros in data (very unlikely), around ~50 rows
## Options: impute data OR get rid of 50 more rows. To decide, we conduct another skew analysis
whiffZeros = whiffData[whiffData.SpinRate == 0]
for col in numericCols:
originalMean = whiffData[col].mean()
zeroMean = whiffZeros[col].mean()
print(col, ': ', originalMean, ' ', zeroMean)
for col in categoricalCols:
originalSet = set(whiffData[col])
zeroSet = set(whiffZeros[col])
print(col)
print(originalSet)
print(zeroSet)
## The dataset where the Spin Rate is zero is almost identical on average to the main data set, so no skew detected
## As a result, we simply remove the 50 rows where the Spin Rate is 0 (likely a data quality issue)
whiffData = whiffData[whiffData.SpinRate != 0]
# %%
### CORRELATION ANALYSIS ###
## Here we build a correlation matrix
corrMatrix = pd.DataFrame(whiffData.corr()).abs()
corrMatrix.loc['average'] = corrMatrix.mean()
high_corrs = []
for idx,row in corrMatrix.iterrows():
for col in corrMatrix.columns:
if (row[col] < 1) & (row[col] > 0.75):
high_corrs.append(col)
print(Counter(high_corrs))
## Pitch of Plate Appearance is correlated with Balls and Strikes, this we need to solve
## Release Speed is correlated (as expected) with Induced Vertical Break (these are considered distinct, so we keep both, despite the correlation)
## Pitch of Plate Appearance, Balls, and Strikes actually combine to say the same thing: Count
## So, instead of having 3 variables here, we construct a simple 'Count' categorical value
whiffData['Count'] = (whiffData.Balls).astype('str') + (whiffData.Strikes).astype('str')
categoricalCols.append('Count')
## Making a full copy before slimming down whiffData (there was only one value in Pitcher, so that column gets dropped)
## We also drop PitcherThrows given that only 3 records total have the pitcher throwing right handed
whiffDataFull = whiffData
whiffData = whiffData.drop(['Balls', 'Strikes', 'PitchofPA', 'Pitcher', 'PitcherThrows'], axis=1)
#%%
### OVERALL TREND ANALYSIS ###
## Using whiffDataFull here
# %%
### FEATURE ENGINEERING ###
## For this analysis, we don't use Year or Date, given that we expect some change in the pitcher's behavior, it does not make sense to extrapolate trends over time (changes in behavior can change the nature of these trends)
whiffRegressionData = whiffData.drop(['Date', 'Year'], axis = 1)
## Here we want to create dummy variables for our categorical variables
## We choose this over other techniques, such as target encoding because we don't have too many categorical variables
whiffRegressionData = pd.get_dummies(whiffRegressionData)
# %%
### CHECKING ASSUMPTIONS FOR REGRESSION ###
## Vaguely linear relationship
pairPlot = sns.pairplot(data=whiffRegressionData,
y_vars=['whiff_prob'],
x_vars=['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32'])
## Multicollinearity has already been checked
## Heteroskedasticity will be checked after model is generated
#%%
### MODEL IMPLEMENTATION, SVR - WHIFF ###
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
varsToInclude = ['ReleaseSpeed', 'InducedVertBreak', 'HorzBreak', 'PlateHeight', 'SpinRate', 'SpinAxis', 'swing_prob']
rsqValues = []
for variable in varsToInclude:
#for variable2 in varsToInclude:
varList = list(set(varsToInclude) - set([variable]))
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varList]
y = whiffRegressionData['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
score = regressor.score(x_test, y_test)
rsqValues.append(score)
if score < 0.6:
print(variable, score)
## Plate Height and Swing Prob combine for 63%, essentially even contribution (slightly more towards plate height)
### Significant variables:
sigVarsWhiff = ['PlateHeight', 'swing_prob']
### Actual model
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['whiff_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 25)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
print(regressor.score(x_test,y_test))
#%%
### PLATE HEIGHT - ANALYSIS ###
### Simulation - Whiff Rate Baseline
deltas = []
avgs = []
for std in tqdm([1,2,3,4,5]):
for seed in list(range(1,51)):
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
#print('MODEL SCORE ', regressor.score(x_test,y_test))
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Increase
oneStDev = abs(x_testDF['PlateHeight'].std())
x_testDF['PlateHeight'] = random.uniform(0.9,1.1) # x_testDF['PlateHeight'] - (std * oneStDev)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
increasedAvg = sum(scaledVals) / len(scaledVals)
delta = (increasedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
#print('DELTA ', delta)
#print('----------------------------')
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print('Change Avg: ', deltaAvg)
## Sanity check
whiffDataRighty = whiffData[whiffData.BatterSide == 'Right']
whiffDataLefty = whiffData[whiffData.BatterSide == 'Left']
print(whiffDataRighty['PlateHeight'].corr(whiffDataRighty['swing_prob']))
print(whiffDataLefty['PlateHeight'].corr(whiffDataLefty['swing_prob']))
#%%
whiffRegressionData.columns
#%%
### SWING PROB ###
## SVR
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
# varsToIncludeSwing = []
# for var in varsToInclude:
# corr = whiffRegressionData[var].corr(whiffRegressionData['swing_prob'])
# if corr > 0.075 or corr < -0.075:
# print(var)
# varsToIncludeSwing.append(var)
rsqValues = []
for variable in varsToInclude:
for variable2 in varsToInclude:
varList = list(set(varsToInclude) - set([variable, variable2]))
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varList]
y = whiffRegressionData['swing_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
score = regressor.score(x_test, y_test)
rsqValues.append(score)
print(score)
if score < 0.6:
print(variable, variable2, score)
#%%
## Actual Model
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['swing_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
score = regressor.score(x_test, y_test)
rsqValues.append(score)
print(score)
## Count is +6%, Plate Side is 33%
#%%
### SWING PROB ANALYSIS PART II ###
### RESULT: Plate Side and Count have the biggest impacts
## Plate Side
print(whiffRegressionData['PlateSide'].corr(whiffRegressionData['swing_prob']))
## Let's split based off batter side
whiffDataRighty = whiffData[whiffData.BatterSide == 'Right']
whiffDataLefty = whiffData[whiffData.BatterSide == 'Left']
print('Right', whiffDataRighty['PlateSide'].corr(whiffDataRighty['swing_prob']))
print('Left', whiffDataLefty['PlateSide'].corr(whiffDataLefty['swing_prob']))
print('swingProb', whiffRegressionData['swing_prob'].corr(whiffDataRighty['whiff_prob']))
## Count
print('COUNT')
print(whiffRegressionData['Count_00'].corr(whiffDataRighty['swing_prob']))
print(whiffRegressionData['Count_01'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_02'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_10'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_11'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_12'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_20'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_21'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_22'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_30'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_31'].corr(whiffRegressionData['swing_prob']))
print(whiffRegressionData['Count_32'].corr(whiffRegressionData['swing_prob']))
#%%
### Simulation - Swing Rate Baseline
deltas = []
avgs = []
for std in tqdm([1,2,3,4,5]):
for seed in list(range(1,51)):
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
#print('MODEL SCORE ', regressor.score(x_test,y_test))
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Increase
oneStDev = abs(x_testDF['PlateHeight'].std())
x_testDF['PlateHeight'] = x_testDF['PlateHeight'] - (std * oneStDev)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
increasedAvg = sum(scaledVals) / len(scaledVals)
delta = (increasedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
#print('DELTA ', delta)
#print('----------------------------')
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print('Change Avg: ', deltaAvg)
print('------------------------------')
## Sanity check
whiffDataRighty = whiffData[whiffData.BatterSide == 'Right']
whiffDataLefty = whiffData[whiffData.BatterSide == 'Left']
print(whiffDataRighty['PlateHeight'].corr(whiffDataRighty['swing_prob']))
print(whiffDataLefty['PlateHeight'].corr(whiffDataLefty['swing_prob']))
#%%
### Plate Side, Righty
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
whiffDataRighty = whiffRegressionData[whiffRegressionData.BatterSide_Right == 1]
X = whiffDataRighty[varsToInclude]
y = whiffDataRighty['swing_prob'].values.reshape(-1,1)
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 5)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
score = regressor.score(x_test, y_test)
rsqValues.append(score)
print(score)
### Simulation - Plate Side, Righty
deltas = []
avgs = []
for std in tqdm([1,2,3,4,5]):
for seed in list(range(1,101)):
seed = random.randint(1,10000)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = seed)
regressor = SVR(kernel='rbf')
regressor.fit(x_train,y_train)
#print('MODEL SCORE ', regressor.score(x_test,y_test))
x_testDF = pd.DataFrame(x_test)
x_testDF.columns = varsToInclude
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
baselineAvg = sum(scaledVals) / len(scaledVals)
### Simulation - Increase
oneStDev = abs(x_testDF['PlateHeight'].std())
x_testDF['PlateHeight'] = random.uniform(-0.5,1.1) #x_testDF['PlateHeight'] - (std * oneStDev)
preds = []
for idx, row in x_testDF.iterrows():
preds.append(regressor.predict(row.values.reshape(1,-1)))
## Normalize Data to within 0 and 1
minVal = min(preds)[0]
maxVal = max(preds)[0]
rangeVal = maxVal - minVal
scaledVals = []
for val in preds:
val = val[0]
scaledVal = (val - minVal) / (rangeVal)
scaledVals.append(scaledVal)
increasedAvg = sum(scaledVals) / len(scaledVals)
delta = (increasedAvg - baselineAvg) / baselineAvg
deltas.append(delta)
#print('DELTA ', delta)
#print('----------------------------')
deltaAvg = sum(deltas) / len(deltas) * 100
avgs.append(deltaAvg)
print('Change Avg: ', deltaAvg)
print('------------------------------')
#%%
## Plate Side
whiffDataRighty = whiffData[whiffData.BatterSide == 'Right']
whiffDataLefty = whiffData[whiffData.BatterSide == 'Left']
print(whiffDataRighty['PlateSide'].mean())
print(whiffDataRighty['PlateSide'].std())
avgs = []
avgswo = []
for threshhold in list(np.linspace(-3,3,100)):
avg = whiffDataRighty[abs(whiffDataRighty.PlateSide - threshhold) < .2]['whiff_prob'].mean()
if math.isnan(avg):
print('non')
continue
if threshhold > -0.5 and threshhold < 1.1:
avgs.append(avg)
else:
avgswo.append(avg)
#print(threshhold, ' ', avg)
print(sum(avgswo) / len(avgswo))
print(sum(avgs) / len(avgs))
## Righty Optimal Range: -0.5 to 1.1
print(whiffDataLefty['PlateSide'].mean())
print(whiffDataLefty['PlateSide'].std())
avgs = []
avgswo = []
for threshhold in list(np.linspace(-3,3,100)):
avg = whiffDataLefty[abs(whiffDataLefty.PlateSide - threshhold) < .2]['whiff_prob'].mean()
if math.isnan(avg):
print('non')
continue
if threshhold > 0.25 and threshhold < 1.25:
avgs.append(avg)
else:
avgswo.append(avg)
#print(threshhold, ' ', avg)
print(sum(avgswo) / len(avgswo))
print(sum(avgs) / len(avgs))
## Lefty Optimal Range: 0.25 to 1.25
#%%
#whiffDataLefty['PlateSide'].hist(bins = 30)
whiffDataRighty['PlateSide'].hist(bins = 30)
# %%
'''
### MODEL IMPLEMENTATION, REGRESSION - WHIFF ###
## First Run
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis', 'swing_prob',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['whiff_prob']
## Adding a constant term
X = sm.add_constant(X)
## Run model
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
# Print out the statistics
print(model.summary())
## Given that there are a few variables that have a weak correlation with whiff_prob, we remove these variables and re-run the algorithm with the idea of producing a clearly prediction with only variables that are significantly correlated
## Iteration Two
varsToInclude = list(set(varsToInclude) - set(['Inning', 'PAofInning', 'ReleaseSide', 'SpinAxis', 'HorzBreak']))
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['whiff_prob']
## Adding a constant term
X = sm.add_constant(X)
## Run model
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
# Print out the statistics
print(model.summary())
## Iteration Three
varsToInclude = list(set(varsToInclude) - set(['Extension', 'ReleaseHeight', 'Count_00', 'Count_01', 'Count_02', 'Count_10', 'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30', 'Count_31', 'Count_32']))
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['whiff_prob']
## Adding a constant term
X = sm.add_constant(X)
## Run model
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
# Print out the statistics
print(model.summary())
sigVars_Whiff = ['swing_prob', 'PitchType_CHANGEUP', 'SpinRate', 'BatterSide_Right', 'InducedVertBreak', 'ReleaseSpeed', 'PlateSide', 'PitchType_SLIDER', 'PlateHeight', 'PitchType_FASTBALL', 'BatterSide_Left']
## Swing Probability really helps with Whiff (understandably, so in additional to how to increase swing_prob), we want to know how to increase swing probability itself
# %%
### MODEL IMPLEMENTATION, REGRESSION - SWING PROB ###
## First Run
varsToInclude = ['Inning', 'PAofInning', 'ReleaseSpeed', 'InducedVertBreak', 'HorzBreak',
'ReleaseHeight', 'ReleaseSide', 'Extension', 'PlateHeight', 'PlateSide',
'SpinRate', 'SpinAxis',
'BatterSide_Left',
'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL',
'PitchType_SLIDER', 'Count_00', 'Count_01', 'Count_02', 'Count_10',
'Count_11', 'Count_12', 'Count_20', 'Count_21', 'Count_22', 'Count_30',
'Count_31', 'Count_32']
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['swing_prob']
## Adding a constant term
X = sm.add_constant(X)
## Run model
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
# Print out the statistics
print(model.summary())
## Given that there are a few variables that have a weak correlation with whiff_prob, we remove these variables and re-run the algorithm with the idea of producing a clearly prediction with only variables that are significantly correlated
## Iteration Two
varsToInclude = list(set(varsToInclude) - set(['Inning', 'PAofInning', 'ReleaseSpeed', 'ReleaseSide', 'Extension', 'SpinAxis','BatterSide_Left', 'BatterSide_Right', 'PitchType_CHANGEUP', 'PitchType_FASTBALL', 'PitchType_SLIDER']))
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['whiff_prob']
## Run model
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
# Print out the statistics
print(model.summary())
## Iteration Three
varsToInclude = list(set(varsToInclude) - set(['SpinRate']))
## Here we remove the whiff probability (gs and non-gs) values
X = whiffRegressionData[varsToInclude]
y = whiffRegressionData['whiff_prob']
## Run model
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
# Print out the statistics
print(model.summary())
sigVars_Swing = ['HorzBreak', 'InducedVertBreak', 'PlateSide', 'ReleaseHeight', 'PlateHeight']
# %%
### SIGNIFICANT VARIABLE ANALYSIS - WHIFF ###
# sigVars_Whiff
sns.scatterplot(data = whiffRegressionData, x = 'PitchType_FASTBALL', y = 'whiff_prob')
'''
# %%