-
Notifications
You must be signed in to change notification settings - Fork 0
/
app_sadtalker.py
111 lines (91 loc) · 5.74 KB
/
app_sadtalker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os, sys
import gradio as gr
from src.gradio_demo import SadTalker
try:
import webui # in webui
in_webui = True
except:
in_webui = False
def toggle_audio_file(choice):
if choice == False:
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
def ref_video_fn(path_of_ref_video):
if path_of_ref_video is not None:
return gr.update(value=True)
else:
return gr.update(value=False)
def sadtalker_demo(checkpoint_path='checkpoints', config_path='src/config', warpfn=None):
sad_talker = SadTalker(checkpoint_path, config_path, lazy_load=True)
with gr.Blocks(analytics_enabled=False) as sadtalker_interface:
#gr.Markdown("<div align='center'> <h2> 😭 SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation (CVPR 2023) </span> </h2> \
# <a style='font-size:18px;color: #efefef' href='https://arxiv.org/abs/2211.12194'>Arxiv</a> \
# <a style='font-size:18px;color: #efefef' href='https://sadtalker.github.io'>Homepage</a> \
# <a style='font-size:18px;color: #efefef' href='https://github.com/Winfredy/SadTalker'> Github </div>")
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_source_image"):
with gr.TabItem('Upload image'):
with gr.Row():
source_image = gr.Image(label="Source image", source="upload", type="filepath", elem_id="img2img_image").style(width=512)
with gr.Tabs(elem_id="sadtalker_driven_audio"):
with gr.TabItem('Upload OR TTS'):
with gr.Column(variant='panel'):
driven_audio = gr.Audio(label="Input audio", source="upload", type="filepath")
#if sys.platform != 'win32' and not in_webui:
from src.utils.text2speech import TTSTalker
tts_talker = TTSTalker()
with gr.Column(variant='panel'):
input_text = gr.Textbox(label="Generating audio from text", lines=5, placeholder="please enter some text here, we genreate the audio from text using @Coqui.ai TTS.")
tts = gr.Button('Generate audio',elem_id="sadtalker_audio_generate", variant='primary')
tts.click(fn=tts_talker.test, inputs=[input_text], outputs=[driven_audio])
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_checkbox"):
with gr.TabItem('Settings'):
gr.Markdown("need help? please contact Akshay Jain for more detials")
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
pose_style = gr.Slider(minimum=0, maximum=46, step=1, label="Pose style", value=0) #
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?") #
preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=2)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer")
submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
with gr.Tabs(elem_id="sadtalker_genearted"):
gen_video = gr.Video(label="Generated video", format="mp4").style(width=256)
if warpfn:
submit.click(
fn=warpfn(sad_talker.test),
inputs=[source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style
],
outputs=[gen_video]
)
else:
submit.click(
fn=sad_talker.test,
inputs=[source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style
],
outputs=[gen_video]
)
return sadtalker_interface
if __name__ == "__main__":
demo = sadtalker_demo()
demo.queue()
demo.launch(share=True)