-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBigmart_benchmark.R
160 lines (104 loc) · 5.24 KB
/
Bigmart_benchmark.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
################################# HEADER #########################
## Script created by Mihaly Garamvolgyi
## 2016/02/09
## R version 3.1.2 (2014-10-31) Pumpkin Helmet
################################# HEADER #########################
start.time <- Sys.time()
# Automatikus package telepítés
packages <- function(x){
x <- as.character(match.call()[[2]])
if (!require(x,character.only=TRUE)){
install.packages(pkgs=x,repos="http://cran.r-project.org")
require(x,character.only=TRUE)
}
}
# packages betöltése
packages(dplyr)
packages(ggplot2) # initial data exploration
packages(car) # recode function
packages(xgboost) # modeling
packages(caret)
packages(AppliedPredictiveModeling)
# working directory
setwd("C:/Misi/Vidhya/Bigmart")
Train <- read.csv("./Data/train.csv", na.strings = "")
Test <- read.csv("./Data/test.csv", na.strings = "")
Train <- mutate(Train, Segment="Train")
Test <- mutate(Test, Segment="Test")
Test <- mutate(Test, Item_Outlet_Sales="")
DT <- rbind(Train, Test)
# ===================== DATA PREPARATION ================
Mean_Item_Weight <- mean(DT$Item_Weight, na.rm=TRUE)
DT$Item_Weight <- replace(DT$Item_Weigh, is.na(DT$Item_Weight), Mean_Item_Weight)
DT$Item_Fat_Content <- as.numeric(recode(DT$Item_Fat_Content,
"'reg'=0; 'Regular'=0;
'LF'=1; 'low fat'=1; 'Low Fat'=1;
else=0",
as.factor.result=FALSE))
DT$Item_Visibility <- replace(DT$Item_Visibility, is.na(DT$Item_Visibility), 0)
DT$Item_Visibility <- replace(DT$Item_Visibility, is.infinite(DT$Item_Visibility), 0)
DT$Item_Type <- as.numeric(recode(DT$Item_Type,
"'Baking Goods'=1; 'Breads'=2; 'Breakfast'=3; 'Canned'=4;
'Dairy'=5; 'Frozen Foods'=6; 'Fruits and Vegetables'=7; 'Hard Drinks'=8;
'Health and Hygiene'=9; 'Household'=10; 'Meat'=11; 'Others'=12;
'Seafood'=13; 'Snack Foods'=14; 'Soft Drinks'=15; 'Starchy Foods'=16;
else=0",
as.factor.result=FALSE))
Mean_Item_MRP <- mean(DT$Item_MRP, na.rm=TRUE)
DT$Item_MRP <- replace(DT$Item_MRP, is.na(DT$Item_MRP), Mean_Item_MRP)
DT$Outlet_Establishment_Year <- as.factor(DT$Outlet_Establishment_Year)
levels(DT$Outlet_Establishment_Year) <- c('0', '1', '2', '3', '4', '5', '6', '7', '8')
DT$Outlet_Establishment_Year <- as.numeric(DT$Outlet_Establishment_Year)
DT$Outlet_Size <- as.numeric(recode(DT$Outlet_Size,
"'Small'=0; 'Medium'=1; 'High'=2; else=0",
as.factor.result=FALSE))
DT$Outlet_Location_Type <- as.numeric(recode(DT$Outlet_Location_Type,
"'Tier 1'=0; 'Tier 2'=1; 'Tier 3'=2; else=0",
as.factor.result=FALSE))
DT$Outlet_Type <- as.numeric(recode(DT$Outlet_Type,
"'Grocery Store'=0; 'Supermarket Type1'=1; 'Supermarket Type2'=2; ; 'Supermarket Type3'=3 ; else=0",
as.factor.result=FALSE))
DT$Item_Outlet_Sales <- as.numeric(DT$Item_Outlet_Sales)
Mean_Item_Outlet_Sales <- mean(as.numeric(DT$Item_Outlet_Sales), na.rm=TRUE)
DT$Item_Outlet_Sales <- replace(DT$Item_Outlet_Sales, is.na(DT$Item_Outlet_Sales), 0)
DT$Item_Outlet_Sales <- replace(DT$Item_Outlet_Sale, is.infinite(DT$Item_Outlet_Sale), 0)
# ----- Create final test and train data ------------------------
Train <- DT[DT$Segment=='Train',]
Test <- DT[DT$Segment=='Test',]
Train_values <- Train$Item_Outlet_Sales
Test_ID_item <- Test$Item_Identifier
Test_ID_outlet <- Test$Outlet_Identifier
Columns <- c(colnames(Train)[12:13], 'Item_Identifier' , 'Outlet_Identifier') # exclude identifiers, segment and value
Train <- Train[!colnames(Train) %in% Columns]
Test <- Test[!colnames(Test) %in% Columns]
# ============================== END DATA PREPARATION ====================
# ---- xgboost ---------
XG_Train <- xgb.DMatrix(as.matrix(Train),label=Train_values)
XG_Test = xgb.DMatrix(as.matrix(Test))
param <- list(
objective = 'reg:linear', # --linear regression / output: value
eta = 0.1,
gamma = 1,
eval_metric = 'rmse' ,
min_child_weight = 4,
max_depth = 4,
subsample = 0.85,
colsample_bytree = 0.5,
max_delta_step = 20
)
rounds <- 1500
XG_Model <- xgb.train(param, XG_Train,rounds)
XG_Prediction <- predict(XG_Model, XG_Test)
XG_Prediction <- cbind(as.character(Test_ID_item), as.character(Test_ID_outlet), as.character(XG_Prediction))
colnames(XG_Prediction) <- c("Item_Identifier", "Outlet_Identifier", "Item_Outlet_Sales")
write.table(XG_Prediction,
file="submission_1_20160210_benchmark.csv",
sep=",",
row.names = FALSE,
col.names = TRUE,
quote=FALSE
)
end.time <- Sys.time()
time.taken <- end.time - start.time
print(paste("elapsed time: ", round(time.taken, 2)))
# score: 1338.12421642