-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtesting.py
185 lines (160 loc) · 6.31 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import print_function
import os
import time
import argparse
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.autograd import Variable
from torchvision import transforms
import skimage
import skimage.io
import skimage.transform
import numpy as np
from tqdm import tqdm
from dataloader import preprocess
from models import LCV_ours_sub3
from dataloader import testing_loader as DA
parser = argparse.ArgumentParser(description='360SD-Net Testing')
parser.add_argument('--datapath',
default='data/MP3D/test/',
help='select model')
parser.add_argument('--checkpoint',
default=None,
help='load checkpoint path')
parser.add_argument('--model',
default='360SDNet',
help='select model')
parser.add_argument('--maxdisp',
type=int,
default=68,
help='maxium disparity')
parser.add_argument('--no-cuda',
action='store_true',
default=False,
help='disables CUDA training')
parser.add_argument('--real',
action='store_true',
default=False,
help='adapt to real world images as input')
parser.add_argument('--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)')
parser.add_argument('--outfile',
type=str,
help='the output path to put the output disparity')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
# Random Seed ------------------------
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# ----------------------------
# Load data -----------------
test_up_img, test_down_img = DA.dataloader(args.datapath)
# ----------------------------
# Load model ----------------
if args.model == '360SDNet':
print("Load model 360SD-Net")
model = LCV_ours_sub3(args.maxdisp)
else:
raise NotImplementedError('Model Not Implemented!!!')
# ----------------------------
# Model Multi-GPU -----------
model = nn.DataParallel(model, device_ids=[0])
model.cuda()
# ----------------------------
# Real World inference ------
if args.real:
print("Real World Testing!!!")
# ----------------------------
# Load checkpoint --------------------------------
if args.checkpoint is not None:
state_dict = torch.load(args.checkpoint)
model.load_state_dict(state_dict['state_dict'])
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# -------------------------------------------------
# Create Angle Info -----------------------------------------------
angle_y = np.array([(i - 0.5) / 512 * 180 for i in range(256, -256, -1)])
angle_ys = np.tile(angle_y[:, np.newaxis, np.newaxis], (1, 1024, 1))
equi_info = angle_ys
# ------------------------------------------------------------------
# Testing Fuction ---------------------------------------------------------
def test(imgU, imgD):
model.eval()
# cuda?
if args.cuda:
imgU = torch.FloatTensor(imgU).cuda()
imgD = torch.FloatTensor(imgD).cuda()
imgU, imgD = Variable(imgU), Variable(imgD)
with torch.no_grad():
output = model(imgU, imgD)
output = torch.squeeze(output)
pred_disp = output.data.cpu().numpy()
return pred_disp
# --------------------------------------------------------------------------
# Main Fuction ------------------------------------------------------------
def main():
processed = preprocess.get_transform(augment=False)
print("Start Testing!!!")
# print(args.pad)
total_time = 0
for inx in tqdm(range(len(test_up_img))):
# read grey scale
if args.real:
imgU_o = np.tile(
skimage.io.imread(test_up_img[inx], as_grey=True)[:, :,
np.newaxis],
(1, 1, 3)) * 255
imgD_o = np.tile(
skimage.io.imread(test_down_img[inx],
as_grey=True)[:, :, np.newaxis],
(1, 1, 3)) * 255
else:
imgU_o = (skimage.io.imread(test_up_img[inx]))
imgD_o = (skimage.io.imread(test_down_img[inx]))
# concatenate polar angle as equirectangular information --------
imgU_o = np.concatenate([imgU_o, equi_info], 2)
imgD_o = np.concatenate([imgD_o, equi_info], 2)
# Real World / Synthetic preprocessing --------------------------
if args.real:
compose_trans = transforms.Compose([transforms.ToTensor()])
imgU = compose_trans(imgU_o).numpy()
imgD = compose_trans(imgD_o).numpy()
imgU = np.reshape(imgU, [1, 4, imgU.shape[1], imgU.shape[2]])
imgD = np.reshape(imgD, [1, 4, imgD.shape[1], imgD.shape[2]])
else:
imgU = processed(imgU_o).numpy()
imgD = processed(imgD_o).numpy()
imgU = np.reshape(imgU, [1, 4, imgU.shape[1], imgU.shape[2]])
imgD = np.reshape(imgD, [1, 4, imgD.shape[1], imgD.shape[2]])
# Wide padding -----------------------------
LR_pad = 32
imgU = np.lib.pad(imgU, ((0, 0), (0, 0), (0, 0), (LR_pad, LR_pad)),
mode='wrap')
imgD = np.lib.pad(imgD, ((0, 0), (0, 0), (0, 0), (LR_pad, LR_pad)),
mode='wrap')
# Testing and count time -------------------
start_time = time.time()
pred_disp = test(imgU, imgD)
total_time += (time.time() - start_time)
img = pred_disp[:, LR_pad:-LR_pad]
# Save output ------------------------------
if args.outfile[-1] == '/':
args.outfile = args.outfile[:-1]
os.system('mkdir -p %s' % args.outfile)
np.save(
args.outfile + '/' + test_up_img[inx].split('/')[-1][:-4] + '.npy',
img)
# -------------------------------------------
# Print Total Time
print("Total time: ", total_time, "Average time: ",
total_time / len(test_up_img))
# ---------------------------------------------------------------------------
if __name__ == '__main__':
print("start main")
main()