-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkohonen.c
executable file
·528 lines (420 loc) · 13.6 KB
/
kohonen.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <math.h>
#include <time.h>
#include "huebar_color.h"
// START Kohonen Algorithm defines and global variables
#define MAP_WIDTH 80
#define MAP_HEIGHT 60
#define NORMALIZATION_VALUE 10000
#define pow2(x) ((x) * (x))
#define BIG_NUM 999999999999999999
#define LINE_SIZE 300
#define FALSE 0
#define TRUE 1
#define uint unsigned int
#define uint64 unsigned long
typedef struct Neuron {
unsigned int* components;
} Neuron;
typedef struct BMU {
unsigned int x_coord;
unsigned int y_coord;
} BMU;
typedef struct CentroidBMU {
unsigned int x_coord;
unsigned int y_coord;
int count;
} CentroidBMU;
typedef struct Coordinate {
float x;
float y;
} Coordinate;
typedef struct Sample {
unsigned int* components;
} Sample;
Neuron** map;
Sample* samples;
int total_components;
char** components_name;
uint* samples_max_components_values;
uint* samples_min_components_values;
int initial_radius = 80;
float round_radius;
// END Kohonen definitions and global variables
// START k-Means Algorithm defines and global variables
#define distance(i, j) (datax(j) - datax(i)) * (datax(j) - datax(i)) + (datay(j) - datay(i)) * (datay(j) - datay(i))
typedef int bool;
int total_samples;
// END k-Means definitions and global variables
// START Kohonen algorithm methods
unsigned int randr(unsigned int min, unsigned int max)
{
double scaled = (double)rand()/RAND_MAX;
return (max - min +1)*scaled + min;
}
char** explode_string(char* a_str, const char a_delim, int* total_items)
{
char** result = 0;
size_t count = 0;
char* tmp = a_str;
char* last_comma = 0;
char delim[2];
delim[0] = a_delim;
delim[1] = 0;
/* Count how many elements will be extracted. */
while (*tmp)
{
if (a_delim == *tmp)
{
count++;
last_comma = tmp;
}
tmp++;
}
/* Add space for trailing token. */
count += last_comma < (a_str + strlen(a_str) - 1);
*total_items = count;
/* Add space for terminating null string so caller
knows where the list of returned strings ends. */
count++;
result = malloc(sizeof(char*) * count);
if (result)
{
size_t idx = 0;
char* token = strtok(a_str, delim);
while (token)
{
*(result + idx++) = strdup(token);
token = strtok(0, delim);
}
*(result + idx) = 0;
}
return result;
}
int stringToInteger(char a[]) {
int c, sign, offset, n;
if (a[0] == '-') { // Handle negative integers
sign = -1;
}
if (sign == -1) { // Set starting position to convert
offset = 1;
}
else {
offset = 0;
}
n = 0;
for (c = offset; (a[c] != '\0') && (a[c] != '\n'); c++) {
n = n * 10 + a[c] - '0';
}
if (sign == -1) {
n = -n;
}
return n;
}
void load_and_initialize_samples(char *filename)
{
FILE *file;
char line[LINE_SIZE];
char** line_components;
int ch, x, y, z, total_line_components;
uint value;
total_samples = 0;
file = fopen(filename, "r");
while(!feof(file)) {
ch = fgetc(file);
if(ch == '\n') {
total_samples++;
}
}
total_samples--;
fclose(file);
printf("\n\nTotal samples: %d\n\n", total_samples);
// 'samples' is the data structure used to store the sample points for Kohonen algorithm process
samples = (Sample *) malloc(sizeof(Sample) * total_samples);
for(int i = 0; i < total_samples; i++) {
samples[i].components = (unsigned int *) malloc(sizeof(unsigned int) * total_components);
}
// read data from file into array
file = fopen(filename, "rt");
fgets(line, LINE_SIZE, file);
components_name = explode_string(line, ',', &total_components);
samples_max_components_values = (uint*) malloc(sizeof(uint) * total_components);
samples_min_components_values = (uint*) malloc(sizeof(uint) * total_components);
// Initialize max values array to blank
for(int e = 0; e < total_components; e++) {
samples_max_components_values[e] = 0;
samples_min_components_values[e] = 0;
}
// Load values from file
for (int i = 0; i < total_samples; i++) {
fgets(line, LINE_SIZE, file);
line_components = explode_string(line, ',', &total_line_components);
for(int e = 0; e < total_line_components; e++) {
value = (unsigned int)(stringToInteger(line_components[e]));
samples[i].components[e] = value;
if(samples_max_components_values[e] < value) {
samples_max_components_values[e] = value;
}
if(samples_min_components_values[e] > value) {
samples_min_components_values[e] = value;
}
}
}
fclose(file);
// Normalize values based on max value of each component from 0 to 255
for (int i = 0; i < total_samples; i++) {
for(int e = 0; e < total_components; e++) {
value = samples[i].components[e];
samples[i].components[e] = (unsigned int)(((value - samples_min_components_values[e]) * NORMALIZATION_VALUE)/(samples_max_components_values[e] - samples_min_components_values[e]));
}
}
}
void initialize_som_map()
{
map = (Neuron **) malloc(sizeof(Neuron *) * MAP_WIDTH);
int x, y;
for(x = 0; x < MAP_WIDTH; x++) {
map[x] = (Neuron *) malloc(sizeof(Neuron) * MAP_HEIGHT);
}
for(x = 0; x < MAP_WIDTH; x++) {
for(y = 0; y < MAP_HEIGHT; y++) {
map[x][y].components = (unsigned int *) malloc(sizeof(unsigned int) * total_components);
for(int i=0; i<total_components;i++) {
map[x][y].components[i] = randr(0,NORMALIZATION_VALUE);
}
}
}
}
Sample* pick_random_sample() {
int i = randr(0,total_samples - 1);
return &samples[i];
}
Sample* pick_sample(int i) {
return &samples[i];
}
uint distance_between_sample_and_neuron(Sample *sample, Neuron *neuron) {
unsigned int euclidean_distance = 0;
unsigned int component_diff;
for(int i = 0; i < total_components; i++) {
component_diff = sample->components[i] - neuron->components[i];
euclidean_distance += pow2(component_diff);
}
return euclidean_distance;
//return sqrt(euclidean_distance);
}
BMU* search_bmu(Sample *sample) {
uint max_dist=999999999;
uint dist = 0;
BMU *bmu = (BMU *) malloc(sizeof(BMU));
for(int x = 0; x < MAP_WIDTH; x++) {
for(int y = 0; y < MAP_HEIGHT; y++) {
dist = distance_between_sample_and_neuron(sample, &map[x][y]);
if(dist < max_dist) {
bmu->x_coord = x;
bmu->y_coord = y;
max_dist = dist;
}
}
}
return bmu;
}
float get_coordinate_distance(Coordinate *p1, Coordinate *p2) {
float x_sub = (p1->x) - (p2->x);
float y_sub = (p1->y) - (p2->y);
return sqrt(x_sub*x_sub + y_sub*y_sub);
}
Coordinate* new_coordinate(float x, float y) {
Coordinate *coordinate = malloc(sizeof(Coordinate));
coordinate->x = x;
coordinate->y = y;
return coordinate;
}
void scale_neuron_at_position(int x, int y, Sample *sample, double scale) {
float neuron_prescaled, neuron_scaled;
Neuron *neuron = &map[x][y];
for(int i=0; i<total_components; i++) {
neuron_prescaled = neuron->components[i] * (1.0f-scale);
neuron_scaled = (sample->components[i] * scale) + neuron_prescaled;
neuron->components[i] = (int)neuron_scaled;
}
}
void scale_neighbors(BMU *bmu, Sample *sample, float t) {
float iteration_radius = roundf((float)(round_radius)*(1.0f-t));
Coordinate *outer = new_coordinate(iteration_radius,iteration_radius);
Coordinate *center = new_coordinate(0.0f,0.0f);
float distance_normalized = get_coordinate_distance(center,outer);
float distance;
double scale;
int x_coord;
int y_coord;
for(float y = -iteration_radius; y<iteration_radius; y++) {
for(float x = -iteration_radius; x<iteration_radius; x++) {
if((y + bmu->y_coord) >= 0 && (y + bmu->y_coord) < MAP_HEIGHT && (x + bmu->x_coord)>=0 && (x + bmu->x_coord) < MAP_WIDTH) {
outer->x = x;
outer->y = y;
distance = get_coordinate_distance(outer,center);
distance /= distance_normalized;
scale = exp(-1.0f * (pow(distance, 2.0f)) / 0.15f);
scale /= (t*4.0f + 1.0f); // +1 is to avoid divide by 0's
x_coord = bmu->x_coord + x;
y_coord = bmu->y_coord + y;
scale_neuron_at_position(x_coord, y_coord, sample, scale);
}
}
}
free(outer);
free(center);
}
void free_allocated_memory() {
for(int e = 0; e < total_components; e++) {
free(components_name[e]);
}
free(components_name);
for(int i = 0; i < total_samples; i++) {
free(samples[i].components);
}
free(samples);
for(int x = 0; x < MAP_WIDTH; x++) {
for(int y = 0; y < MAP_HEIGHT; y++) {
free(map[x][y].components);
}
free(map[x]);
}
free(map);
free(samples_max_components_values);
free(samples_min_components_values);
}
char* concat(const char *s1, const char *s2)
{
char *result = malloc(strlen(s1)+strlen(s2)+1);//+1 for the zero-terminator
strcpy(result, s1);
strcat(result, s2);
return result;
}
void output_html(BMU *final_bmus, bool auto_reload)
{
bool found_bmu = FALSE;
int diff_val, max_val, min_val, x_val, y_val, z_val, i, value, red, green, blue;
uint x, y;
float e;
RGB *huebar = create_color_huebar(255);
FILE *f = fopen("generated_kohonen_map.html", "w");
if (f == NULL)
{
printf("Error opening file!\n");
exit(1);
}
if(auto_reload) {
fprintf(f, "<html><head><script>setTimeout(function(){ window.location.reload(1); }, 2500);</script></head><body>");
} else {
fprintf(f, "<html><head></head><body>");
}
fprintf(f, "<br/><h2>Components</h2>");
for(int c = 0; c < total_components; c++) {
fprintf(f, "<div style=\"width:500px;height:250px\">");
fprintf(f, "<h3>%s</h3>", components_name[c]);
fprintf(f, "<div style='position: absolute;'><table style='border-collapse: collapse;'>");
// Search the min and max values of each vector component
max_val = 0;
min_val = 9999999;
for(y = 0; y < MAP_HEIGHT; y++) {
for(x = 0; x < MAP_WIDTH; x++) {
x_val = (int)((map[x][y].components[c] * (samples_max_components_values[c] - samples_min_components_values[c]))/NORMALIZATION_VALUE);
if(min_val > x_val) {
min_val = x_val;
}
if(max_val < x_val) {
max_val = x_val;
}
}
}
diff_val = max_val - min_val;
for(y = 0; y < MAP_HEIGHT; y++) {
fprintf(f, "<tr>");
for(x = 0; x < MAP_WIDTH; x++) {
value = (int)((map[x][y].components[c] * (samples_max_components_values[c] - samples_min_components_values[c]))/NORMALIZATION_VALUE);
x_val = (int)(((value - min_val) * 255)/diff_val);
RGB *color = &huebar[x_val];
fprintf(f, "<td style='width:3px;height:3px;background-color:rgb(%d,%d,%d);' title='%d'></td>", color->r, color->g, color->b, value);
}
fprintf(f, "</tr>");
}
fprintf(f, "</table></div>");
fprintf(f, "<div style='position: absolute; left: 420px;'><table style='border-collapse: collapse;'>");
for(e = 0.0f; e < 255.0f; e+=2.86f) {
RGB *color = &huebar[(int)e];
if(e == 0.0f) {
fprintf(f, "<tr><td style='width:3px;height:1px;background-color:rgb(%d,%d,%d);'><div style=\"position:absolute; width:50px;top:0px;text-align:left;\"> %d</div><div style=\"position: absolute; text-align: left; width: 50px; top: 85px;\"> %d</div><div style=\"position:absolute; width:50px;bottom:0px;text-align:left;\"> %d</div></td></tr>", color->r, color->g, color->b, min_val, min_val + (max_val-min_val)/2, max_val);
} else {
fprintf(f, "<tr><td style='width:3px;height:1px;background-color:rgb(%d,%d,%d);'></td></tr>", color->r, color->g, color->b);
}
}
fprintf(f, "</table></div>");
fprintf(f, "</div>");
}
fprintf(f, "</tr></table>");
free(huebar);
fprintf(f, "</body></html>");
fclose(f);
}
// END Kohonen algorithm methods
int main(int argc, char **argv)
{
// usage: ./kohonen file_with_samples
char *filename = argv[1];
load_and_initialize_samples(filename);
int MAX_TRAINING_ROUNDS = 10;
float ROUND_INC = 1.0f/(float)(MAX_TRAINING_ROUNDS);
float r = 0.0f;
int MAX_ITER_PER_ROUND = total_samples * 30; // Number of iterations is 30 times the number of input samples
float T_INC = 1.0f/(float)(MAX_ITER_PER_ROUND);
float t = 0.0f;
BMU *bmu;
BMU *final_bmus;
int iteration_num;
int round_num;
Sample *sample;
// seed random
srand(time(NULL));
final_bmus = (BMU *)malloc(sizeof(BMU) * total_samples);
initialize_som_map();
//output_html(final_bmus, TRUE);
round_radius = initial_radius;
round_num = 0;
while(r < 1.0f)
{
round_radius = (r == 0.0f) ? initial_radius : (round_radius/2.0f);
printf("\nROUND %d/%d | INITIAL RADIUS: %d | RADIUS: %f\n", round_num, MAX_TRAINING_ROUNDS, initial_radius, round_radius);
iteration_num = 0;
t = 0.0f;
while(t < 1.0f)
{
sample = pick_random_sample();
bmu = search_bmu(sample); // Best Match Unit
scale_neighbors(bmu, sample, t);
free(bmu);
t += T_INC;
iteration_num++;
//output_html(final_bmus, TRUE);
//usleep(100000);
}
r += ROUND_INC;
round_num++;
}
// Save the BMU coordinates in the SOM map
for (int i = 0; i < total_samples; i++) {
sample = pick_sample(i);
bmu = search_bmu(sample); // Best Match Unit
final_bmus[i].x_coord = (uint)bmu->x_coord;
final_bmus[i].y_coord = (uint)bmu->y_coord;
free(bmu);
}
output_html(final_bmus, FALSE);
free(final_bmus);
free_allocated_memory();
return 0;
}