-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_spikes.py
145 lines (110 loc) · 3.39 KB
/
plot_spikes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import sys
import csv
import numpy as np
from matplotlib import pyplot as plt
if len(sys.argv) < 2:
sys.exit(1)
folder = sys.argv[1]
if folder[-1] != "/":
folder = folder + "/"
with open(folder + "spikes.csv") as f:
reader = csv.reader(f)
rows = [r for r in reader][1:]
events = {} # {id: spike times}
for row in rows:
n_id, t = row
n_id = int(float(n_id))
t = float(t)
try:
events[n_id].append(t)
except:
events[n_id] = []
n_ids = np.array(list(events.keys()), dtype=int)
n_ids.sort()
go_x = np.array([0.0])
go_y = np.array([0.0])
with open(folder + "gonogo_events.csv") as f:
reader = csv.reader(f)
rows = [r for r in reader][1:]
for row in rows:
if row[0] == "GO":
go_x = np.concatenate((go_x, np.array([1000.0 * float(row[1]), 1000.0 * float(row[1])])))
go_y = np.concatenate((go_y, np.array([0.0, 1.0])))
elif row[0] == "NOGO":
go_x = np.concatenate((go_x, np.array([1000.0 * float(row[1]), 1000.0 * float(row[1])])))
go_y = np.concatenate((go_y, np.array([1.0, 0.0])))
#MF: 3, 102
#GR: 105, 2104
#PC: 2107, 2178
#IO: 2181, 2252
#DCN: 2255, 2290
#tg_pr: 2493, 2572
#tg_ct: 2575, 2654
#tg_dt: 2657, 2736
#tg_ht: 2739, 2818
#tg_ws: 2821, 2900
#TG: 2493, 2900
#FN: 2369, 2490
mf_range = range(3, 103)
gr_range = range(105, 2105)
pc_range = range(2107, 2178)
io_range = range(2181, 2253)
dcn_range = range(2255, 2291)
tg_range = range(2493, 2901)
fn_range = range(2369, 2491)
def plot_spikes(color, pop_range, label, ax):
global n_ids
label_done = False
for i in n_ids:
if i in pop_range:
spikes = events[i]
if not label_done:
ax.plot(spikes, np.full_like(spikes, i), marker=".", label=label, color=color, linestyle="None")
label_done = True
else:
ax.plot(spikes, np.full_like(spikes, i), marker=".", color=color, linestyle="None")
fig_handle = plt.figure()
ax = fig_handle.add_subplot(121)
ax.set_xlabel('$t$ (ms)')
plot_spikes('orange', fn_range, 'Facial Nuclei', ax)
plot_spikes('grey', tg_range, 'Trigeminal Ganglion', ax)
ax.plot(go_x, 2369 + go_y*550, "k")
plt.legend()
ax = fig_handle.add_subplot(122)
ax.set_xlabel('$t$ (ms)')
plot_spikes('blue', mf_range, 'Mossy', ax)
plot_spikes('red', gr_range, 'Granule', ax)
plot_spikes('green', pc_range, 'Purkinje', ax)
plot_spikes('magenta', io_range, 'Inferior Olive', ax)
plot_spikes('black', dcn_range, 'Deep Cerebellar Nuclei', ax)
ax.plot(go_x, go_y*2290, "k")
plt.legend()
#FN: 2369, 2490
#TG: 2493, 2900
#tg_pr: 2493, 2572
#tg_ct: 2575, 2654
#tg_dt: 2657, 2736
#tg_ht: 2739, 2818
#tg_ws: 2821, 2900
#tn_ct: 2903, 2906
#tn_phase: 2909, 2988
tgpr_range = range(2493, 2573)
tgct_range = range(2575, 2655)
tgdt_range = range(2657, 2737)
tght_range = range(2739, 2819)
tgws_range = range(2821, 2901)
tnct_range = range(2903, 2907)
tnph_range = range(2909, 2989)
fig_handle = plt.figure()
ax = fig_handle.add_subplot(111)
ax.set_xlabel('$t$ (ms)')
plot_spikes('orange', tgpr_range, 'TG Pression', ax)
plot_spikes('grey', tgct_range, 'TG Contact', ax)
plot_spikes('blue', tgdt_range, 'TG Detach', ax)
plot_spikes('red', tght_range, 'TG High Threshold', ax)
plot_spikes('green', tgws_range, 'TG Whisking', ax)
plot_spikes('black', tnct_range, 'TN Contact', ax)
plot_spikes('purple', tnph_range, 'TN Phase', ax)
ax.plot(go_x, 2492 + go_y*620, "k")
plt.legend()
plt.show()