-
Notifications
You must be signed in to change notification settings - Fork 4
/
vec.h
618 lines (503 loc) · 13.2 KB
/
vec.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
#pragma once
//Based on the work of: Mat Buckland (fup@ai-junkie.com)
#include <iosfwd>
#include <limits>
#include <string>
#include <fstream>
#include <sstream>
#include <iomanip>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include <math.h>
#include "angles.h"
struct veci {
int x, y;
constexpr veci(int a, int b) : x(a), y(b) {}
};
struct vec
{
float x, y;
explicit constexpr vec() : x(0.f), y(0.f) {}
explicit constexpr vec(float xy) : x(xy), y(xy) {}
constexpr vec(float x, float y) : x(x), y(y) {}
constexpr vec(const veci& v) : x(v.x), y(v.y) {}
static const vec Zero;
//Angle to direction
[[nodiscard]] static vec FromAngleRads(float rads, float len=1.0f) {
return vec(cos(rads)*len,sin(rads)*len);
}
//Angle to direction
[[nodiscard]] static vec FromAngleDegs(float degs, float len = 1.0f) {
return FromAngleRads(Angles::DegsToRads(degs), len);
}
//returns the length of the vector
[[nodiscard]] inline float Length() const;
//returns the squared length of the vector (thereby avoiding the sqrt)
[[nodiscard]] inline float LengthSq() const;
inline void Normalize();
[[nodiscard]] inline vec Normalized() const;
// Dot product: returns the length of the projection of one vector onto the other (order doesn't matter, it's symmetrical)
// It can be used to know how alligned the directions of both vectors are, assuming they are normalized:
// Perpendicular -> dot product = 0
// Parallel, same direction -> dot product = 1
// Parallel, opposite direction -> dot product = -1
[[nodiscard]] inline float Dot(vec v2) const;
[[nodiscard]] inline float Cross(vec v2) const;
void Clamp(vec minv, vec maxv)
{
if (x > maxv.x) x = maxv.x;
else if (x < minv.x) x = minv.x;
if (y > maxv.y) y = maxv.y;
else if (y < minv.y) y = minv.y;
}
[[nodiscard]] vec Clamped(vec minv, vec maxv)
{
vec ret = *this;
ret.Clamp(minv, maxv);
return ret;
}
[[nodiscard]] std::string ToString() const {
std::stringstream stream;
stream << std::fixed << std::setprecision(2) << x << "," << y;
return stream.str();
}
[[nodiscard]] vec Mirrored(bool mirror_x, bool mirror_y) const {
return vec(mirror_x ? -x : x, mirror_y ? -y : y);
}
//returns positive if v2 is clockwise of this vector,
//negative if anticlockwise (assuming the Y axis is pointing down,
//X axis to right like a Window app)
[[nodiscard]] inline int Sign(vec v2) const;
// Angle in Rads between the lines (origin to point a) and (origin to point b)
// In range [-Pi,Pi]
[[nodiscard]] float AngleRads(vec other = vec::Zero) const
{
float deltaY = other.y - y;
float deltaX = other.x - x;
return atan2(deltaY, deltaX);
}
// Angle in Degrees between the lines (origin to point a) and (origin to point b)
// In range [-180,180]
[[nodiscard]] float AngleDegs(vec other = vec::Zero) const
{
return Angles::RadsToDegs(AngleRads(other));
}
[[nodiscard]] vec RotatedAroundOriginRads(float rads) const
{
float cs = cos(rads);
float sn = sin(rads);
return vec(x * cs - y * sn, x * sn + y * cs);
}
[[nodiscard]] vec RotatedAroundOriginDegs(float degrees) const
{
return RotatedAroundOriginRads(Angles::DegsToRads(degrees));
}
// Note: If specified, maxTurnRate should to be multiplied by dt
[[nodiscard]] vec RotatedToFacePositionRads(vec target, float maxTurnRateRads = std::numeric_limits<float>::max()) const;
[[nodiscard]] inline vec RotatedToFacePositionDegs(vec target) const {
return RotatedToFacePositionRads(target);
}
[[nodiscard]] inline vec RotatedToFacePositionDegs(vec target, float maxTurnRateDegs) const {
return RotatedToFacePositionRads(target, Angles::DegsToRads(maxTurnRateDegs));
}
//returns the vector that is perpendicular to this one.
[[nodiscard]] inline vec Perp() const;
//adjusts x and y so that the length of the vector does not exceed max
inline bool Truncate(const float max); // affects in-place
[[nodiscard]] inline vec Truncated(const float max); // returns a new vec
//returns the distance between this vector and th one passed as a parameter
[[nodiscard]] inline float Distance(vec v2) const;
//squared version of above.
[[nodiscard]] inline float DistanceSq(vec v2) const;
[[nodiscard]] inline vec ManhattanDistance(vec v2) const;
constexpr vec operator+=(vec rhs)
{
x += rhs.x;
y += rhs.y;
return *this;
}
constexpr vec operator-=(vec rhs)
{
x -= rhs.x;
y -= rhs.y;
return *this;
}
constexpr vec operator*=(const float& rhs)
{
x *= rhs;
y *= rhs;
return *this;
}
// Component-wise product (like in GLSL)
constexpr vec operator*=(const vec& rhs)
{
x *= rhs.x;
y *= rhs.y;
return *this;
}
constexpr vec operator/=(const float& rhs)
{
x /= rhs;
y /= rhs;
return *this;
}
constexpr vec operator/=(const vec& rhs)
{
x /= rhs.x;
y /= rhs.y;
return *this;
}
constexpr bool operator==(vec rhs) const
{
return (x == rhs.x) && (y == rhs.y);
}
constexpr bool operator!=(vec rhs) const
{
return (x != rhs.x) || (y != rhs.y);
}
constexpr vec operator-() const
{
return vec(-x, -y);
}
void DebugDrawAsArrow(vec from, uint8_t r = 255, uint8_t g = 255, uint8_t b = 255) const
#ifdef _DEBUG
;
#else
{}
#endif
void DebugDraw(uint8_t r = 255, uint8_t g = 255, uint8_t b = 255) const
#ifdef _DEBUG
;
#else
{}
#endif
};
inline constexpr vec vec::Zero = vec(0,0);
inline float vec::Length() const
{
return sqrt(x * x + y * y);
}
inline float vec::LengthSq() const
{
return (x * x + y * y);
}
inline float vec::Dot(vec v2) const
{
return x*v2.x + y*v2.y;
}
inline float vec::Cross(vec v2) const
{
return x*v2.y - y*v2.x;
}
// returns positive if v2 is clockwise of this vector,
// minus if anticlockwise (Y axis pointing down, X axis to right)
enum {clockwise = 1, anticlockwise = -1};
inline int vec::Sign(vec v2) const
{
if (y*v2.x > x*v2.y)
{
return anticlockwise;
}
else
{
return clockwise;
}
}
// Returns a vector perpendicular to this vector
inline vec vec::Perp() const
{
return vec(-y, x);
}
// calculates the euclidean distance between two vectors
inline float vec::Distance(vec v2) const
{
float ySeparation = v2.y - y;
float xSeparation = v2.x - x;
return sqrt(ySeparation*ySeparation + xSeparation*xSeparation);
}
// calculates the euclidean distance squared between two vectors
inline float vec::DistanceSq(vec v2) const
{
float ySeparation = v2.y - y;
float xSeparation = v2.x - x;
return ySeparation*ySeparation + xSeparation*xSeparation;
}
inline vec vec::ManhattanDistance(vec v2) const
{
return vec(
fabs(v2.x - x),
fabs(v2.y - y)
);
}
// truncates a vector so that its length does not exceed max
inline bool vec::Truncate(float max)
{
if (this->Length() > max)
{
this->Normalize();
*this *= max;
return true;
}
return false;
}
inline vec vec::Truncated(float max)
{
if (this->Length() > max)
{
vec ret = this->Normalized();
ret *= max;
return ret;
}
return *this;
}
// normalizes a 2D Vector
inline void vec::Normalize()
{
float vector_length = this->Length();
if (vector_length > std::numeric_limits<float>::epsilon())
{
this->x /= vector_length;
this->y /= vector_length;
}
}
inline vec vec::Normalized() const
{
float vector_length = this->Length();
vec res;
if (vector_length > std::numeric_limits<float>::epsilon())
{
res.x = this->x / vector_length;
res.y = this->y / vector_length;
}
return res;
}
//------------------------------------------------------------------------non member functions
inline float Distance(vec v1, vec v2)
{
float ySeparation = v2.y - v1.y;
float xSeparation = v2.x - v1.x;
return sqrt(ySeparation*ySeparation + xSeparation*xSeparation);
}
inline float DistanceSq(vec v1, vec v2)
{
float ySeparation = v2.y - v1.y;
float xSeparation = v2.x - v1.x;
return ySeparation*ySeparation + xSeparation*xSeparation;
}
//------------------------------------------------------------------------operator overloads
inline constexpr vec operator*(vec lhs, float rhs)
{
vec result(lhs);
result *= rhs;
return result;
}
inline constexpr vec operator*(float lhs, vec rhs)
{
vec result(rhs);
result *= lhs;
return result;
}
// Component-wise product (like in GLSL)
inline constexpr vec operator*(vec lhs, vec rhs)
{
return vec(lhs.x * rhs.x, lhs.y * rhs.y);
}
inline constexpr vec operator-(vec lhs, vec rhs)
{
vec result(lhs);
result -= rhs;
return result;
}
inline constexpr vec operator+(vec lhs, vec rhs)
{
vec result(lhs);
result += rhs;
return result;
}
inline constexpr vec operator/(vec lhs, float rhs)
{
vec result(lhs);
result /= rhs;
return result;
}
inline constexpr vec operator/(vec lhs, vec rhs)
{
vec result(lhs);
result /= rhs;
return result;
}
///////////////////////////////////////////////////////////////////////////////
inline constexpr veci operator+(veci lhs, veci rhs)
{
veci result(lhs);
result.x += rhs.x;
result.y += rhs.y;
return result;
}
inline constexpr veci operator-(veci lhs, veci rhs)
{
veci result(lhs);
result.x -= rhs.x;
result.y -= rhs.y;
return result;
}
///////////////////////////////////////////////////////////////////////////////
//treats a window as a toroid
inline void WrapAround(vec &pos, float MaxX, float MaxY)
{
if (pos.x > MaxX) {pos.x = 0.f;}
if (pos.x < 0.f) {pos.x = MaxX;}
if (pos.y < 0.f) {pos.y = MaxY;}
if (pos.y > MaxY) {pos.y = 0.f;}
}
// returns true if the target position is in the field of view of the entity
// positioned at posFirst facing in facingFirst
inline bool IsSecondInFOVOfFirst(vec posFirst,
vec facingFirst,
vec posSecond,
float fov)
{
vec toTarget = (posSecond - posFirst);
toTarget.Normalize();
return facingFirst.Dot(toTarget) >= cos(fov/2.0f);
}
//-------------------- LineIntersection2D-------------------------
//
// Given 2 lines in 2D space AB, CD this returns true if an
// intersection occurs and sets dist to the distance the intersection
// occurs along AB. Also sets the 2d vector point to the point of
// intersection
//-----------------------------------------------------------------
inline bool LineIntersection2D(vec A, vec B, vec C, vec D, float& dist, vec& point)
{
float rTop = (A.y-C.y)*(D.x-C.x)-(A.x-C.x)*(D.y-C.y);
float rBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);
float sTop = (A.y-C.y)*(B.x-A.x)-(A.x-C.x)*(B.y-A.y);
float sBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);
if ( (rBot == 0) || (sBot == 0))
{
//lines are parallel
return false;
}
float r = rTop/rBot;
float s = sTop/sBot;
if( (r > 0) && (r < 1) && (s > 0) && (s < 1) )
{
dist = A.Distance(B) * r;
point = A + r * (B - A);
return true;
}
else
{
dist = 0;
return false;
}
}
// Lerp for vecs
namespace Mates {
[[nodiscard]] inline vec Lerp(vec from, vec to, float t)
{
return vec(Lerp(from.x, to.x, t), Lerp(from.y, to.y, t));
}
}
//-----------------------------------------------------------------------------
// printing
//-----------------------------------------------------------------------------
inline std::ostream& operator<<(std::ostream& os, vec rhs)
{
os << rhs.x << "," << rhs.y;
return os;
}
struct Transform : public vec {
constexpr Transform(vec pos, float rotationDegs) : vec(pos), rotationDegs(rotationDegs) { Angles::ClampDegsBetween0and360(rotationDegs); }
constexpr Transform(float x, float y, float rotationDegs) : Transform(vec(x, y), rotationDegs) { }
float rotationDegs;
constexpr Transform operator-() const
{
return Transform(-x, -y, 360-rotationDegs);
}
constexpr Transform operator+=(Transform rhs)
{
x += rhs.x;
y += rhs.y;
rotationDegs += rhs.rotationDegs;
Angles::ClampDegsBetween0and360(rotationDegs);
return *this;
}
constexpr Transform operator+=(vec rhs)
{
x += rhs.x;
y += rhs.y;
return *this;
}
constexpr Transform operator-=(Transform rhs)
{
x -= rhs.x;
y -= rhs.y;
rotationDegs -= rhs.rotationDegs;
Angles::ClampDegsBetween0and360(rotationDegs);
return *this;
}
constexpr Transform operator*=(const float& rhs)
{
x *= rhs;
y *= rhs;
rotationDegs *= rhs;
Angles::ClampDegsBetween0and360(rotationDegs);
return *this;
}
constexpr Transform operator/=(const float& rhs)
{
x /= rhs;
y /= rhs;
rotationDegs /= rhs;
Angles::ClampDegsBetween0and360(rotationDegs);
return *this;
}
constexpr bool operator==(Transform rhs) const
{
return (x == rhs.x) && (y == rhs.y) && (rotationDegs == rhs.rotationDegs);
}
constexpr bool operator!=(Transform rhs) const
{
return (x != rhs.x) || (y != rhs.y) || (rotationDegs == rhs.rotationDegs);
}
};
//------------------------------------------------------------------------operator overloads
inline constexpr Transform operator*(Transform lhs, float rhs)
{
Transform result(lhs);
result *= rhs;
return result;
}
inline constexpr Transform operator*(float lhs, Transform rhs)
{
Transform result(rhs);
result *= lhs;
return result;
}
inline constexpr Transform operator-(Transform lhs, Transform rhs)
{
Transform result(lhs);
result -= rhs;
return result;
}
inline constexpr Transform operator+(Transform lhs, Transform rhs)
{
Transform result(lhs);
result += rhs;
return result;
}
inline constexpr Transform operator+(Transform lhs, vec rhs)
{
Transform result(lhs);
result += rhs;
return result;
}
inline constexpr Transform operator/(Transform lhs, float rhs)
{
Transform result(lhs);
result /= rhs;
return result;
}