-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNOAA_OISST_ncdf4.R
179 lines (159 loc) · 7.92 KB
/
NOAA_OISST_ncdf4.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# NOAA_OISST_ncdf4.R
# Functions to extract mean sea surface temperature data from NOAA's Optimum
# Interpolated Sea Surface Temperature (OISST) v2 High Resolution daily or
# weekly datasets.
# Daily data are available on a 1/4? global grid.
# Weekly data are available on a 1? global grid.
# Windows users, note that you'll need to manually download the ncdf4 package
# from http://cirrus.ucsd.edu/~pierce/ncdf/, since it is not available
# directly from CRAN. David Pierce is the author of the ncdf4 package.
# See http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
# for information about the year-long OISST v2 daily files.
# See http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
# for more information about the weekly OISST v2 files
# See http://www.ncdc.noaa.gov/sst/griddata.php
# for more information about the single-day AVHRR OISST files
# Author: Luke Miller Nov 25, 2014
# Modified by: Alfredo Hernández Nov 21, 2017
###############################################################################
require(ncdf4) # install.packages('ncdf4') if you don't already have it.
# NOTE: If you are on Windows, a pre-compiled package is not available directly
# from CRAN repositories. You must go to http://cirrus.ucsd.edu/~pierce/ncdf/
# and download the appropriate zip file for your version of Windows and R.
# Once that file is downloaded to your computer, open a version of Rgui.exe
# and go to the menu item "Packages>Install package(s) from local zip file"
# to install the ncdf4 package. This step should only be necessary once, until
# you upgrade to a new version of R. Mac and Linux versions of ncdf4 should be
# available directly from CRAN.
require(fields) # install.packages('fields') if you don't already have it.
extractOISST1day <- function(fname, lsmask, lonW, lonE, latS, latN) {
# The 1-day OISST v2 high resolution files come as gz-compressed NetCDF
# files. You MUST unzip those files before trying to use this function.
# Obtain the files from http://www.ncdc.noaa.gov/sst/griddata.php
# or directly from ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/NetCDF/
# These are essentially just smaller single-day versions of the much
# larger one-year files that contain daily data that are available at
# ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/
# ______________________________________________________________________
# Inputs
# fname: full path to unzipped NetCDF data file
# lsmask: full path to land-sea mask NetCDF file
# lonW: western-most longitude of search area, must be smaller than lonE
# lonE: eastern-most longitude of search area, must be larger than lonW
# latS: southern-most latitude of search area, must be smaller than latN
# latN: northern-most latitude of search area, must be larger than latS
# lonE, latN are optional.
# Output
# A 2-dimensional matrix with latitudes in rows and longitudes in columns.
# The value [1,1] is the northernmost,
# westernmost lat/long location on the 1st date.
# To extract lat/lon values from the output array, use the
# dimnames() function:
# lats = as.numeric(dimnames(sst2)$Lat)
# longs = as.numeric(dimnames(sst2)$Long)
# ________________________________________________________
# NetCDF files should be downloaded from the links on:
# ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/NetCDF/
#
# In addition to the temperature data files, also download a copy of the
# landmask file lsmask.oisst.v2.nc from:
# http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
# Inside the NetCDF files, data are available on a
# 0.25? latitude x 0.25? longitude global grid (720x1440 cells)
# From -89.875N to 89.875N, 0.125E to 359.875E.
# Locations are at the CENTER of a grid cell.
# Southern Hemisphere latitudes must be given as NEGATIVE degrees NORTH.
# For example, the Tropic of Capricorn is at roughly -23.43? north.
# All longitudes must be given as positive degrees EAST of the prime
# meridian. For example, Los Angeles is at roughly 241.77? east.
# Generate set of grid cell latitudes (center of cell) from south to north
lats <- seq(-89.875, 89.875, 0.25)
# Generate set of grid cell longitudes (center of cell)
lons <- seq(0.125, 359.875, 0.25)
# Create connection to NetCDF data file (must be unzipped manually already)
nc <- nc_open(fname)
lonWindx <- which.min(abs(lonW - lons)) # get index of nearest longitude value
if (missing(lonE)) {
# If lonE isn't specified, reused lonW
lonE <- lonW
lonEindx <- lonWindx
cat("Only 1 longitude specified\n")
} else {
# Get index of nearest longitude value to lonE
lonEindx <- which.min(abs(lonE - lons))
}
latSindx <- which.min(abs(latS - lats)) # get index of nearest latitude value
if (missing(latN)) {
# If latN is not specified, reuse latS
latN <- latS
latNindx <- latSindx
cat("Only 1 latitude specified\n")
} else {
# Get index of nearest latitude value to latN
latNindx <- which.min(abs(latN - lats))
}
# The lon/lat indx values should now correspond to indices in the NetCDF
# file for the desired grid cell.
nlon <- (lonEindx - lonWindx) + 1 # get number of longitudes to extract
nlat <- (latNindx - latSindx) + 1 # get number of latitudes to extract
# Extract the date from the file
dateref <- nc$dim$time$units
dateref <- sub("days since ", "", dateref, ignore.case = TRUE)
date1 <- as.Date(nc$dim$time$vals[1], origin = dateref)
# Although this extracts the date, I do not currently include it in the
# output, as I assume you are already getting the date from the input
# filename before running this function.
# Define the output array
sstout <- matrix(data = NA, nrow = nlon, ncol = nlat)
# Extract the data from the NetCDF file
# There are extra zlev and date dimensions that aren't applicable in the
# single-day mean SST extraction
sstout[, ] <- ncvar_get(nc,
varid = "sst",
start = c(lonWindx, latSindx, 1, 1),
count = c(nlon, nlat, 1, 1)
)
# The output array sstout will be arranged with longitudes in rows,
# increasing in an easterly direction as you move down a row (larger
# longitude values), and latitudes in columns, increasing in latitude (more
# northerly) as you move across columns.
# This arrangement stems from how the data are set up in
# the NetCDF file, so my apologies if it's counterintuitive.
# If there are missing data in the NetCDF, they should appear as 32767.
# Replace that value with NA if it occurs anywhere.
sstout <- ifelse(sstout == 32767, NA, sstout)
# The NOAA OISST files contain sea surface temperatures for the entire
# globe, including on the continents. This clearly isn't right, so they also
# supply a land-sea mask file in netCDF format. We use the values (0 or 1)
# stored in the mask file to turn all of the continent areas into NA's.
# Open the land-sea mask
nc2 <- nc_open(lsmask)
# Create array to hold land-sea mask
mask <- array(data = NA, dim = c(nlon, nlat, 1))
# Get land-sea mask values (0 or 1)
mask[, , ] <- ncvar_get(nc2,
varid = "lsmask",
start = c(lonWindx, latSindx, 1), count = c(nlon, nlat, 1)
)
# Replace 0's with NA's
mask <- ifelse(mask == 0, NA, 1)
sstout[, ] <- sstout[, ] * as.matrix(mask[, , 1]) # All masked values become NA
# Add dimension names
attr(sstout, "dimnames") <- list(Long = seq(lons[lonWindx], lons[lonEindx],
by = 0.25
), Lat = seq(lats[latSindx], lats[latNindx],
by = 0.25
))
# sstout now has dimension names that show the longitude and latitude of
# each point in the array.
############################################################################
# Rearrange the output matrix or array so that latitudes run from north to
# south down the rows, and longitudes run from west to east across columns.
sstout <- t(sstout)
sstout <- sstout[nrow(sstout):1, ]
nc_close(nc)
nc_close(nc2)
#############################
sstout # return sstout matrix
#############################
} # end of function