-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
169 lines (132 loc) · 6.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import getpass
from datetime import datetime
import torch
import random
import numpy as np
import torch.distributed as dist
import inspect
import importlib.util
import socket
import os
from typing import Dict, Union, Type, List
def get_remote_file(remote_path, local_path=None):
hostname, path = remote_path.split(':')
local_hostname = socket.gethostname()
if hostname == local_hostname or hostname == local_hostname[:local_hostname.find('.')]:
return path
if local_path is None:
local_path = path
# local_path = local_path.replace('/scr-ssd', '/scr')
if os.path.exists(local_path):
return local_path
local_dir = os.path.dirname(local_path)
os.makedirs(local_dir, exist_ok=True)
print(f'Copying {hostname}:{path} to {local_path}')
os.system(f'scp {remote_path} {local_path}')
return local_path
def rank0_print(*args, **kwargs):
"""Print, but only on rank 0."""
if not dist.is_initialized() or dist.get_rank() == 0:
print(*args, **kwargs)
def get_local_dir(prefixes_to_resolve: List[str]) -> str:
"""Return the path to the cache directory for this user."""
for prefix in prefixes_to_resolve:
if os.path.exists(prefix):
return f"{prefix}/{getpass.getuser()}"
os.makedirs(prefix)
return f"{prefix}/{getpass.getuser()}"
def get_local_run_dir(exp_name: str, local_dirs: List[str]) -> str:
"""Create a local directory to store outputs for this run, and return its path."""
now = datetime.now()
timestamp = now.strftime("%Y-%m-%d_%H-%M-%S_%f")
run_dir = f"{get_local_dir(local_dirs)}/{exp_name}_{timestamp}"
os.makedirs(run_dir, exist_ok=True)
return run_dir
def slice_and_move_batch_for_device(batch: Dict, rank: int, world_size: int, device: str) -> Dict:
"""Slice a batch into chunks, and move each chunk to the specified device."""
chunk_size = len(list(batch.values())[0]) // world_size
start = chunk_size * rank
end = chunk_size * (rank + 1)
sliced = {k: v[start:end] for k, v in batch.items()}
on_device = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in sliced.items()}
return on_device
def pad_to_length(tensor: torch.Tensor, length: int, pad_value: Union[int, float], dim: int = -1) -> torch.Tensor:
if tensor.size(dim) >= length:
return tensor
else:
pad_size = list(tensor.shape)
pad_size[dim] = length - tensor.size(dim)
return torch.cat([tensor, pad_value * torch.ones(*pad_size, dtype=tensor.dtype, device=tensor.device)], dim=dim)
def all_gather_if_needed(values: torch.Tensor, rank: int, world_size: int) -> torch.Tensor:
"""Gather and stack/cat values from all processes, if there are multiple processes."""
if world_size == 1:
return values
all_values = [torch.empty_like(values).to(rank) for _ in range(world_size)]
dist.all_gather(all_values, values)
cat_function = torch.cat if values.dim() > 0 else torch.stack
return cat_function(all_values, dim=0)
def formatted_dict(d: Dict) -> Dict:
"""Format a dictionary for printing."""
return {k: (f"{v:.5g}" if type(v) == float else v) for k, v in d.items()}
def disable_dropout(model: torch.nn.Module):
"""Disable dropout in a model."""
for module in model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0
def print_gpu_memory(rank: int = None, message: str = ''):
"""Print the amount of GPU memory currently allocated for each GPU."""
if torch.cuda.is_available():
device_count = torch.cuda.device_count()
for i in range(device_count):
device = torch.device(f'cuda:{i}')
allocated_bytes = torch.cuda.memory_allocated(device)
if allocated_bytes == 0:
continue
print('*' * 40)
print(f'[{message} rank {rank} ] GPU {i}: {allocated_bytes / 1024**2:.2f} MB')
print('*' * 40)
def get_block_class_from_model(model: torch.nn.Module, block_class_name: str) -> torch.nn.Module:
"""Get the class of a block from a model, using the block's class name."""
for module in model.modules():
if module.__class__.__name__ == block_class_name:
return module.__class__
raise ValueError(f"Could not find block class {block_class_name} in model {model}")
def get_block_class_from_model_class_and_block_name(model_class: Type, block_class_name: str) -> Type:
filepath = inspect.getfile(model_class)
assert filepath.endswith('.py'), f"Expected a .py file, got {filepath}"
assert os.path.exists(filepath), f"File {filepath} does not exist"
assert "transformers" in filepath, f"Expected a transformers model, got {filepath}"
module_name = filepath[filepath.find('transformers'):].replace('/', '.')[:-3]
print(f"Searching in file {filepath}, module {module_name} for class {block_class_name}")
# Load the module dynamically
spec = importlib.util.spec_from_file_location(module_name, filepath)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Get the class dynamically
class_ = getattr(module, block_class_name)
print(f"Found class {class_} in module {module_name}")
return class_
def init_distributed(rank: int, world_size: int, master_addr: str = 'localhost', port: int = 12355, backend: str = 'nccl'):
print(rank, 'initializing distributed')
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = str(port)
dist.init_process_group(backend, rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
class TemporarilySeededRandom:
def __init__(self, seed):
"""Temporarily set the random seed, and then restore it when exiting the context."""
self.seed = seed
self.stored_state = None
self.stored_np_state = None
def __enter__(self):
# Store the current random state
self.stored_state = random.getstate()
self.stored_np_state = np.random.get_state()
# Set the random seed
random.seed(self.seed)
np.random.seed(self.seed)
def __exit__(self, exc_type, exc_value, traceback):
# Restore the random state
random.setstate(self.stored_state)
np.random.set_state(self.stored_np_state)