forked from mravanelli/SincNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_d_vector.py
260 lines (188 loc) · 7.75 KB
/
compute_d_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# compute_d_vector.py
# Mirco Ravanelli
# Mila - University of Montreal
# Feb 2019
# Description:
# This code computes d-vectors using a pre-trained model
import os
import soundfile as sf
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from dnn_models import MLP
from dnn_models import SincNet as CNN
from data_io import ReadList,read_conf_inp,str_to_bool
import sys
# Model to use for computing the d-vectors
model_file='/home/mirco/sincnet_models/SincNet_TIMIT/model_raw.pkl' # This is the model to use for computing the d-vectors (it should be pre-trained using the speaker-id DNN)
cfg_file='/home/mirco/SincNet/cfg/SincNet_TIMIT.cfg' # Config file of the speaker-id experiment used to generate the model
te_lst='data_lists/TIMIT_test.scp' # List of the wav files to process
out_dict_file='d_vect_timit.npy' # output dictionary containing the a sentence id as key as the d-vector as value
data_folder='/home/mirco/Dataset/TIMIT_norm_nosil'
avoid_small_en_fr=True
energy_th = 0.1 # Avoid frames with an energy that is 1/10 over the average energy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#device = None
# Reading cfg file
options=read_conf_inp(cfg_file)
#[data]
pt_file=options.pt_file
output_folder=options.output_folder
#[windowing]
fs=int(options.fs)
cw_len=int(options.cw_len)
cw_shift=int(options.cw_shift)
#[cnn]
cnn_N_filt=list(map(int, options.cnn_N_filt.split(',')))
cnn_len_filt=list(map(int, options.cnn_len_filt.split(',')))
cnn_max_pool_len=list(map(int, options.cnn_max_pool_len.split(',')))
cnn_use_laynorm_inp=str_to_bool(options.cnn_use_laynorm_inp)
cnn_use_batchnorm_inp=str_to_bool(options.cnn_use_batchnorm_inp)
cnn_use_laynorm=list(map(str_to_bool, options.cnn_use_laynorm.split(',')))
cnn_use_batchnorm=list(map(str_to_bool, options.cnn_use_batchnorm.split(',')))
cnn_act=list(map(str, options.cnn_act.split(',')))
cnn_drop=list(map(float, options.cnn_drop.split(',')))
#[dnn]
fc_lay=list(map(int, options.fc_lay.split(',')))
fc_drop=list(map(float, options.fc_drop.split(',')))
fc_use_laynorm_inp=str_to_bool(options.fc_use_laynorm_inp)
fc_use_batchnorm_inp=str_to_bool(options.fc_use_batchnorm_inp)
fc_use_batchnorm=list(map(str_to_bool, options.fc_use_batchnorm.split(',')))
fc_use_laynorm=list(map(str_to_bool, options.fc_use_laynorm.split(',')))
fc_act=list(map(str, options.fc_act.split(',')))
#[class]
class_lay=list(map(int, options.class_lay.split(',')))
class_drop=list(map(float, options.class_drop.split(',')))
class_use_laynorm_inp=str_to_bool(options.class_use_laynorm_inp)
class_use_batchnorm_inp=str_to_bool(options.class_use_batchnorm_inp)
class_use_batchnorm=list(map(str_to_bool, options.class_use_batchnorm.split(',')))
class_use_laynorm=list(map(str_to_bool, options.class_use_laynorm.split(',')))
class_act=list(map(str, options.class_act.split(',')))
wav_lst_te=ReadList(te_lst)
snt_te=len(wav_lst_te)
# Folder creation
try:
os.stat(output_folder)
except:
os.mkdir(output_folder)
# loss function
cost = nn.NLLLoss()
# Converting context and shift in samples
wlen=int(fs*cw_len/1000.00)
wshift=int(fs*cw_shift/1000.00)
# Batch_dev
Batch_dev=128
# Feature extractor CNN
CNN_arch = {'input_dim': wlen,
'fs': fs,
'cnn_N_filt': cnn_N_filt,
'cnn_len_filt': cnn_len_filt,
'cnn_max_pool_len':cnn_max_pool_len,
'cnn_use_laynorm_inp': cnn_use_laynorm_inp,
'cnn_use_batchnorm_inp': cnn_use_batchnorm_inp,
'cnn_use_laynorm':cnn_use_laynorm,
'cnn_use_batchnorm':cnn_use_batchnorm,
'cnn_act': cnn_act,
'cnn_drop':cnn_drop,
}
CNN_net=CNN(CNN_arch)
CNN_net.to(device)
DNN1_arch = {'input_dim': CNN_net.out_dim,
'fc_lay': fc_lay,
'fc_drop': fc_drop,
'fc_use_batchnorm': fc_use_batchnorm,
'fc_use_laynorm': fc_use_laynorm,
'fc_use_laynorm_inp': fc_use_laynorm_inp,
'fc_use_batchnorm_inp':fc_use_batchnorm_inp,
'fc_act': fc_act,
}
DNN1_net=MLP(DNN1_arch)
DNN1_net.to(device)
DNN2_arch = {'input_dim':fc_lay[-1] ,
'fc_lay': class_lay,
'fc_drop': class_drop,
'fc_use_batchnorm': class_use_batchnorm,
'fc_use_laynorm': class_use_laynorm,
'fc_use_laynorm_inp': class_use_laynorm_inp,
'fc_use_batchnorm_inp':class_use_batchnorm_inp,
'fc_act': class_act,
}
DNN2_net=MLP(DNN2_arch)
DNN2_net.to(device)
checkpoint_load = torch.load(model_file)
CNN_net.load_state_dict(checkpoint_load['CNN_model_par'])
DNN1_net.load_state_dict(checkpoint_load['DNN1_model_par'])
DNN2_net.load_state_dict(checkpoint_load['DNN2_model_par'])
CNN_net.eval()
DNN1_net.eval()
DNN2_net.eval()
test_flag=1
d_vector_dim=fc_lay[-1]
d_vect_dict={}
with torch.no_grad():
for i in range(snt_te):
[signal, fs] = sf.read(data_folder+'/'+wav_lst_te[i])
# Amplitude normalization
signal=signal/np.max(np.abs(signal))
signal=torch.from_numpy(signal).float().to(device).contiguous()
if avoid_small_en_fr:
# computing energy on each frame:
beg_samp=0
end_samp=wlen
N_fr=int((signal.shape[0]-wlen)/(wshift))
Batch_dev=N_fr
en_arr=torch.zeros(N_fr).float().contiguous().to(device)
count_fr=0
count_fr_tot=0
while end_samp<signal.shape[0]:
en_arr[count_fr]=torch.sum(signal[beg_samp:end_samp].pow(2))
beg_samp=beg_samp+wshift
end_samp=beg_samp+wlen
count_fr=count_fr+1
count_fr_tot=count_fr_tot+1
if count_fr==N_fr:
break
en_arr_bin=en_arr>torch.mean(en_arr)*0.1
en_arr_bin.to(device)
n_vect_elem=torch.sum(en_arr_bin)
if n_vect_elem<10:
print('only few elements used to compute d-vectors')
sys.exit(0)
# split signals into chunks
beg_samp=0
end_samp=wlen
N_fr=int((signal.shape[0]-wlen)/(wshift))
sig_arr=torch.zeros([Batch_dev,wlen]).float().to(device).contiguous()
dvects=Variable(torch.zeros(N_fr,d_vector_dim).float().to(device).contiguous())
count_fr=0
count_fr_tot=0
while end_samp<signal.shape[0]:
sig_arr[count_fr,:]=signal[beg_samp:end_samp]
beg_samp=beg_samp+wshift
end_samp=beg_samp+wlen
count_fr=count_fr+1
count_fr_tot=count_fr_tot+1
if count_fr==Batch_dev:
inp=Variable(sig_arr)
dvects[count_fr_tot-Batch_dev:count_fr_tot,:]=DNN1_net(CNN_net(inp))
count_fr=0
sig_arr=torch.zeros([Batch_dev,wlen]).float().to(device).contiguous()
if count_fr>0:
inp=Variable(sig_arr[0:count_fr])
dvects[count_fr_tot-count_fr:count_fr_tot,:]=DNN1_net(CNN_net(inp))
if avoid_small_en_fr:
dvects=dvects.index_select(0, (en_arr_bin==1).nonzero().view(-1))
# averaging and normalizing all the d-vectors
d_vect_out=torch.mean(dvects/dvects.norm(p=2, dim=1).view(-1,1),dim=0)
# checks for nan
nan_sum=torch.sum(torch.isnan(d_vect_out))
if nan_sum>0:
print(wav_lst_te[i])
sys.exit(0)
# saving the d-vector in a numpy dictionary
dict_key=wav_lst_te[i].split('/')[-2]+'/'+wav_lst_te[i].split('/')[-1]
d_vect_dict[dict_key]=d_vect_out.cpu().numpy()
print(dict_key)
# Save the dictionary
np.save(out_dict_file, d_vect_dict)