-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils_for_imgLabel.py
301 lines (257 loc) · 9.29 KB
/
utils_for_imgLabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import cv2
import csv
import random
import pickle
import numpy as np
from glob import glob
from functools import reduce
from collections import defaultdict
def genHeatMap(w, h, cx, cy, r, mag):
"""
generate heat map of tracking badminton
param:
w: width of output heat map
h: height of output heat map
cx: x coordinate of badminton
cy: y coordinate of badminton
r: radius of circle generated
mag: factor to change range of grayscale
"""
if cx == -1 or cy == -1:
return np.zeros((h, w))
x, y = np.meshgrid(np.linspace(1, w, w), np.linspace(1, h, h))
heatmap = ((y - (cy + 1))**2) + ((x - (cx + 1))**2)
heatmap[heatmap <= r**2] = 1
heatmap[heatmap > r**2] = 0
return heatmap*mag
def split_train_test(match_list, ratio=0.9, shuffle=True):
"""
Split dataset into training and testing based on match list
param:
match_list --> list of match folder path
ratio --> split ratio
shuffle --> boolean to indicate whether to shuffle match_list
before generating dataset lists
"""
if shuffle:
random.shuffle(match_list)
n_match = len(match_list)
# print(n_match)
# print(match_list[0])
# print(match_list[1])
# print(match_list[2])
train_match = match_list[:int(n_match*ratio)]
test_match = match_list[int(n_match*ratio):]
x_train, y_train = [], []
for match in train_match:
train_imgs = glob(os.path.join(match, 'x_data', '*.jpg'))
train_hmaps = glob(os.path.join(match, 'y_data', '*.jpg'))
x_train.extend(train_imgs)
y_train.extend(train_hmaps)
x_test, y_test = [], []
for match in test_match:
test_imgs = glob(os.path.join(match, 'x_data', '*.jpg'))
test_hmaps = glob(os.path.join(match, 'y_data', '*.jpg'))
x_test.extend(test_imgs)
y_test.extend(test_hmaps)
return x_train, x_test, y_train, y_test
def read_img(file, hmap=False):
"""
Read image from path and convert to format suitable for model
param:
file --> path of image file
hmap --> boolean to indicate whether image is heat map or not
"""
img = cv2.imread(file)
if hmap:
img = img[:,:,0]
img = np.expand_dims(img, 0)
return img.astype('float')/255.
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = np.expand_dims(img, 0)
return img.astype('float')/255.
def check_steps(img_paths, batch_size, frame_stack):
"""
Compute how many steps required for an training epoch
param:
img_paths --> list of image path
batch_size --> batch size
frame_stack --> number of frames to stack for one input
"""
frame_counts = defaultdict(lambda: 0)
for path in img_paths:
video_name = reduce(lambda x, y:x+y, path.split('_')[:-1])
frame_counts[video_name] += 1
n_steps = 0
for count in frame_counts.values():
n_steps += (count - (frame_stack-1))//batch_size
return n_steps - 1
def data_generator(batch_size, x_list, y_list, frame_stack):
"""
Custom data generator to stack n frames for 'one' input
param:
batch_size --> batch size
x_list --> image path list
y_list --> heat map path list
frame_stack --> number of frames to stack for one input
"""
x_list = sorted(x_list)
y_list = sorted(y_list)
data_size = len(x_list)
# initialize images and heatmaps array
END = False
end = (frame_stack-1) + (batch_size-1)
images = [read_img(path) for path in x_list[:frame_stack]]
hmap = read_img(y_list[frame_stack-1], hmap=True)
while True:
batch_imgs = []
batch_hmaps = []
# dynamically pop and append a new image to avoid multiple reading
for i in reversed(range(batch_size)):
img = np.concatenate(images, axis=0)
batch_imgs.append(img)
images.pop(0)
images.append(read_img(x_list[end]))
batch_hmaps.append(hmap)
hmap = read_img(y_list[end], hmap=True)
end += 1
if end >= data_size:
END = True
break
# if image comes from different video, reset images and heat_maps
next_info = os.path.split(x_list[end])[-1].split('_')
curr_info = os.path.split(x_list[end-1])[-1].split('_')
if next_info[:-1] != curr_info[:-1]:
images = [read_img(path) for path in x_list[end:end+frame_stack]]
heat_maps = read_img(y_list[end+(frame_stack-1)], hmap=True)
end += frame_stack
break
if END:
END=False
end = (frame_stack-1) + (batch_size-1)
images = [read_img(path) for path in x_list[:frame_stack]]
hmap = read_img(y_list[frame_stack-1], hmap=True)
continue
yield np.array(batch_imgs), np.array(batch_hmaps)
def confusion(y_pred, y_true, tol):
"""
compute confusion matrix value
TP: True positive
TN: True negative
FP2: False positive
FN: False negative
FP1: If distance of ball center between
ground truth and prediction is larger than tolerance
param:
y_pred --> predicted heat map
y_true --> ground truth heat map
tol --> acceptable tolerance of heat map circle center
between ground truth and prediction
"""
batch_size = y_pred.shape[0]
TP = TN = FP1 = FP2 = FN = 0
for b in range(batch_size):
h_pred = y_pred[b]*255
h_pred = h_pred.astype('uint8')
h_true = y_true[b]*255
h_true = h_true.astype('uint8')
if np.amax(h_pred)==0 and np.amax(h_true)==0:
TN += 1
elif np.amax(h_pred)>0 and np.amax(h_true)==0:
FP2 += 1
elif np.amax(h_pred)==0 and np.amax(h_true)>0:
FN += 1
elif np.amax(h_pred)>0 and np.amax(h_true)>0:
# find center of ball for prediction
# _, contours, _ = cv2.findContours(h_pred[0].copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours, _ = cv2.findContours(h_pred[0].copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
bboxes = [cv2.boundingRect(cnt) for cnt in contours]
areas = np.array([bbox[2] * bbox[3] for bbox in bboxes])
target = bboxes[np.argmax(areas)]
x, y, w, h = target
(cx_pred, cy_pred) = (int(x+w/2), int(y+h/2))
# find center of ball for ground truth
# _, contours, _ = cv2.findContours(h_true.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours, _ = cv2.findContours(h_true.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
bboxes = [cv2.boundingRect(cnt) for cnt in contours]
areas = np.array([bbox[2] * bbox[3] for bbox in bboxes])
target = bboxes[np.argmax(areas)]
x, y, w, h = target
(cx_true, cy_true) = (int(x+w/2), int(y+h/2))
dist = ((cx_pred-cx_true)**2 + (cy_pred-cy_true)**2)**0.5
if dist > tol:
FP1 += 1
else:
TP += 1
return (TP, TN, FP1, FP2, FN)
def compute_acc(evaluation):
"""
Compute accuracy, precision and recall
parame:
evaluation --> a tuple containing 5 variable(TP, TN, FP1, FP2, FN)
"""
(TP, TN, FP1, FP2, FN) = evaluation
try:
accuracy = (TP + TN) / (TP + TN + FP1 + FP2 + FN)
except:
accuracy = 0
try:
precision = TP / (TP + FP1 + FP2)
except:
precision = 0
try:
recall = TP / (TP + FN)
except:
recall = 0
return accuracy, precision, recall
def save_info(info, video_path):
success = False
try:
video_name = os.path.split(video_path)[-1][:-4]
with open(video_name+'.csv', 'w') as file:
file.write("Frame,Ball,x,y\n")
for frame in info:
data = "{},{},{:.3f},{:.3f}".format(info[frame]["Frame"], info[frame]["Ball"],
info[frame]["x"],info[frame]["y"])
file.write(data+'\n')
success = True
print("Save info successfully into", video_name+'.csv')
except:
print("Save info failure")
return success
def load_info(csv_path):
with open(csv_path, 'r') as file:
lines = file.readlines()
n_frames = len(lines) - 1
info = {
idx:{
'Frame': idx,
'Ball': 0,
'x': -1,
'y': -1
} for idx in range(n_frames)
}
for line in lines[1:]:
frame, ball, x, y = line.split(',')
frame = int(frame)
info[frame]['Frame'] = frame
info[frame]['Ball'] = int(ball)
info[frame]['x'] = float(x)
info[frame]['y'] = float(y)
return info
def show_image(image, frame_no, x, y):
h, w, _ = image.shape
if x != -1 and y != -1:
x_pos = int(x*w)
y_pos = int(y*h)
cv2.circle(image, (x_pos, y_pos), 5, (0, 0, 255), -1)
text = "Frame: {}".format(frame_no)
cv2.putText(image, text, (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3, cv2.LINE_AA)
return image
def go2frame(cap, frame_no, info):
x, y = info[frame_no]['x'], info[frame_no]['y']
cap.set(1, frame_no)
ret, image = cap.read()
image = show_image(image, frame_no, x, y)
return image