-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgeneration.sh
84 lines (79 loc) · 2.38 KB
/
generation.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#TRAIN_BS=1
#EVAL_BS=8
#model=pegasus-large
#OUTPUT_DIR=trained_models/generation
#eval_dataroot=data_eval
#eval_dataset=test
#
## convert ks predictions into source sentences for generation
#python prepare-generation-input.py ${eval_dataroot} ${eval_dataset} pred/ks.test.json pred
#
## start generation
#python generation-finetune.py \
#--data_dir=pred \
#--model_name_or_path ${OUTPUT_DIR}/best_tfmr \
#--task summarization \
#--learning_rate=2e-5 \
#--train_batch_size=${TRAIN_BS} \
#--eval_batch_size=${EVAL_BS} \
#--eval_beams 5 \
#--output_dir=${OUTPUT_DIR} \
#--max_source_length=256 \
#--max_target_length=64 \
#--val_max_target_length 64 \
#--test_max_target_length 64 \
#--val_check_interval=1.0 \
#--val_metric rouge2 \
#--do_predict \
#--gpus 1 \
#--num_train_epochs 5 \
##--check_output_dir \
##--do_train \
#
#python scripts/scores_pipeline.py \
#--outfile ${OUTPUT_DIR}/test_generations.txt \
#--reffile ${eval_dataroot}/${eval_dataset}/labels.json \
#--ksfile pred/ks.test.json \
#--finalfile pred/${model}-response-final.json \
#--scorefile pred/${model}-scores.json
#
#cat pred/${model}-scores.json
# this is for generating predictions for subjective KMDM
TRAIN_BS=1
EVAL_BS=4
#model=pegasus-large
model=t5-large
OUTPUT_DIR=trained_models/generation/${model}
eval_dataroot=files_for_di_model
#eval_dataroot=data_eval
eval_dataset=test
# convert ks predictions into source sentences for generation
python prepare-generation-input.py ${eval_dataroot} ${eval_dataset} files_for_di_model/gt_ktd.gt_ks.json pred
#python prepare-generation-input.py ${eval_dataroot} ${eval_dataset} pred/ks.test.json pred
# start generation
python generation-finetune.py \
--data_dir=pred \
--model_name_or_path ${OUTPUT_DIR}/best_tfmr \
--task summarization \
--learning_rate=2e-5 \
--train_batch_size=${TRAIN_BS} \
--eval_batch_size=${EVAL_BS} \
--eval_beams 5 \
--output_dir=${OUTPUT_DIR} \
--max_source_length=256 \
--max_target_length=64 \
--val_max_target_length 64 \
--test_max_target_length 64 \
--val_check_interval=1.0 \
--val_metric rouge2 \
--do_predict \
--gpus 1 \
--num_train_epochs 5 \
python scripts/scores_pipeline.py \
--outfile ${OUTPUT_DIR}/test_generations.txt \
--reffile ${eval_dataroot}/${eval_dataset}/labels.json \
--finalfile pred/${model}-response-t5.json \
--scorefile pred/${model}-scores.json \
--ksfile files_for_di_model/gt_ktd.gt_ks.json \
#--ksfile pred/ks.test.json \
cat pred/${model}-scores.json