-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstellingen.tex
188 lines (149 loc) · 7.23 KB
/
stellingen.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
\documentclass{article}
\input{definitions.tex}
\usepackage{fullpage}
\begin{document}
\begin{center}
\sf {\Large\noindent \textbf{Stellingen}
}
\vspace{0.5em}
\noindent behorende bij het proefschrift
\vspace{0.5em}
\noindent {\Large \textbf{Zeta-values of arithmetic schemes at negative
integers\\ and Weil-étale cohomology}
}
\vspace{0.5em}
\noindent van Alexey Beshenov
\end{center}
In everything what follows, $X$ is an arithmetic scheme (separated, of finite
type over $\Spec \ZZ$) and $n$ is a \emph{strictly negative} integer.
We denote by $\ZZ^c (n)$ the dualizing Bloch's cycle complex of sheaves on
$X_\text{\it ét}$, and by $\ZZ (n)$ the complex of sheaves
$\bigoplus_p \dirlim_r j_{p!} \mu_{p^r}^{\otimes n} [-1]$, where
$j_p\colon X [1/p] \hookrightarrow X$ is the canonical open immersion for each
prime $p$ and $\mu_{p^r}^{\otimes n}$ is the sheaf of $p^r$-th roots of unity on
$X[1/p]_\text{\it ét}$ twisted by $n$.
We denote by $R\Gamma_c (X_\text{\it ét}, \mathcal{F}^\bullet)$ the étale
cohomology with compact support and by
$R\widehat{\Gamma}_c (X_\text{\it ét}, \mathcal{F}^\bullet)$ the modified étale
cohomology with compact support, as defined e.g. in Milne's book ``Arithmetic
Duality theorems''.
For brevity, we write $[A^\bullet, B^\bullet]$ instead of
$\RHom (A^\bullet, B^\bullet)$.
\vspace{1em}
All the main constructions are done assuming the \term{conjecture}
$\mathbf{L}^c (X_\text{\it ét}, n)$:
\emph{the cohomology groups $H^i (X_\text{\it ét}, \ZZ^c (n))$ are finitely
generated for all $i \in \ZZ$}.
\begin{enumerate}
\item[I.] Assuming $\mathbf{L}^c (X_\text{\it ét}, n)$, there is a
quasi-isomorphism of complexes
$$R\widehat{\Gamma}_c (X_\text{\it ét}, \ZZ (n)) \xrightarrow{\isom}
[R\Gamma (X_\text{\it ét}, \ZZ^c (n)), \QQ/\ZZ [-2]].$$
\item[II.] Assume $\mathbf{L}^c (X_\text{\it ét}, n)$ and let $\alpha_{X,n}$ be
the composition of morphisms of complexes
\[
[R\Gamma (X_\text{\it ét}, \ZZ^c (n)), \QQ [-2]] \to
[R\Gamma (X_\text{\it ét}, \ZZ^c (n)), \QQ/\ZZ[-2]] \xleftarrow{\isom}
R\widehat{\Gamma}_c (X_\text{\it ét}, \ZZ (n)) \to
R\Gamma_c (X_\text{\it ét}, \ZZ (n))
\]
Let $R\Gamma_\text{\it fg} (X, \ZZ (n))$ be a cone of $\alpha_{X,n}$:
\[
[R\Gamma (X_\text{\it ét}, \ZZ^c (n)), \QQ [-2]] \xrightarrow{\alpha_{X,n}}
R\Gamma_c (X_\text{\it ét}, \ZZ (n)) \to
R\Gamma_\text{\it fg} (X, \ZZ (n)) \to
[R\Gamma (X_\text{\it ét}, \ZZ^c (n)), \QQ [-1]]
\]
Then the cohomology groups $H^i (R\Gamma_\text{\it fg} (X, \ZZ (n)))$ are
finitely generated, trivial for $i \ll 0$, and only have $2$-torsion for
$i \gg 0$.
\item[III.] For any prime $\ell$ the group
$H^i_c (X_{\overline{\QQ},\text{\it ét}}, \QQ_\ell/\ZZ_\ell (n))^{G_\QQ}$
has no nontrivial divisible elements.
\item[IV.] Assume $\mathbf{L}^c (X_\text{\it ét}, n)$ and let $\alpha_{X,n}$ be
as above. Let
\[ u_\infty^*\colon R\Gamma_c (X_\text{\it ét}, \ZZ (n)) \to
R\Gamma_c (G_\RR, X (\CC), (2\pi i)^n\,\ZZ) \]
be the canonical comparison morphism, discussed in \S\S 0.7--0.8 of the
thesis. Then $u_\infty^*\circ \alpha_{X,n} = 0$. Let $i_\infty^*$ be a morphism
of complexes defined via
\[ \begin{tikzcd}
{[R\Gamma (X, \ZZ^c (n)), \QQ [-2]]} \ar{r}{\alpha_{X,n}}\ar{d} & R\Gamma_c (X_\text{\it ét}, \ZZ (n)) \ar{d}{u_\infty^*}\ar{r} & R\Gamma_\text{\it fg} (X, \ZZ (n)) \ar[dashed]{d}{i_\infty^*}\ar{r} & \cdots\ar{d} \\
0\ar{r} & R\Gamma_c (G_\RR, X (\CC), (2\pi i)^n\,\ZZ) \ar{r}{\idid} & R\Gamma_c (G_\RR, X (\CC), (2\pi i)^n\,\ZZ) \ar{r} & 0
\end{tikzcd} \]
and let $R\Gamma_\text{\it W,c} (X,\ZZ(n))$ be a mapping fiber of
$i_\infty^*$:
\[
R\Gamma_\text{\it W,c} (X,\ZZ(n)) \to
R\Gamma_\text{\it fg} (X, \ZZ (n)) \xrightarrow{i_\infty^*}
R\Gamma_c (G_\RR, X (\CC), (2\pi i)^n\,\ZZ) \to
R\Gamma_\text{\it W,c} (X,\ZZ(n)) [1]
\]
Then $R\Gamma_\text{\it W,c} (X,\ZZ(n))$ is a perfect complex.
\end{enumerate}
\begin{center}
\noindent * ~ * ~ * ~ * ~ *
\end{center}
To formulate the next result, we denote by $\mathbf{C} (X,n)$ the following
conjecture.
{\it
\begin{enumerate}
\item[a)] assume that the conjecture $\mathbf{L}^c (X_\text{\it ét}, n)$ holds;
\item[b)] assume that $X_\CC$ is smooth, quasi-projective, so that the regulator
morphism
\[ Reg\colon R\Gamma (X_\text{\it ét}, \ZZ^c (n)) \to
R\Gamma_{BM} (G_\RR, X (\CC), (2\pi i)^n\,\RR) [1] \]
exists and assume the \term{regulator conjecture}: the $\RR$-dual is a
quasi-isomorphism
\[ Reg^\vee\colon R\Gamma_c (G_\RR, X (\CC), (2\pi i)^n\,\RR) [-1] \xrightarrow{\isom}
[R\Gamma (X_\text{\it ét}, \ZZ^c (n)), \RR]. \]
\item[c)] assume that the zeta-function $\zeta (X,s)$ has a meromorphic
continuation near $s=n$.
\end{enumerate}
\textbf{Then}
\begin{enumerate}
\item[1)] the leading coefficient $\zeta^* (X,n)$ of the Taylor expansion of
$\zeta (X,s)$ at $s = n$ is given up to sign by
\[ \lambda (\zeta^* (X,n)^{-1})\cdot \ZZ =
\det\nolimits_\ZZ R\Gamma_\text{\it W,c} (X, \ZZ (n)), \]
where $\lambda$ is the trivialization morphism defined using the regulator in
\S 2.3 of the thesis;
\item[2)] the vanishing order of $\zeta (X,n)$ at $s = n$ is given by the
weighted alternating sum of ranks of $H^i_\text{\it W,c} (X, \ZZ (n))$:
\[ \ord_{s=n} \zeta (X,s) =
\sum_{i\in\ZZ} (-1)^i \cdot i \cdot \rk_\ZZ H^i_\text{\it W,c} (X, \ZZ (n)). \]
\end{enumerate}}
\begin{center}
\noindent * ~ * ~ * ~ * ~ *
\end{center}
\begin{enumerate}
\item[V.] The conjecture $\mathbf{C} (X,n)$ is compatible with disjoint unions,
open-closed decompositions and taking affine bundles in the following sense.
\begin{itemize}
\item If $X = \coprod_{0 \le i \le r} X_i$ is a disjoint union of arithmetic
schemes, then the conjectures $\mathbf{C} (X_i, n)$ for $i = 0,\ldots,r$
together imply $\mathbf{C} (X, n)$.
\item If $U \hookrightarrow X \hookleftarrow Z$ is an open-closed decomposition
of an arithmetic scheme, then if two out of three conjectures
$\mathbf{C} (U, n)$, $\mathbf{C} (Z, n)$, $\mathbf{C} (X, n)$ hold, the
other one holds as well.
\item The conjecture $\mathbf{C} (\AA^r_X,n)$ is equivalent to
$\mathbf{C} (X,n-r)$.
\end{itemize}
\item[VI.] Sometimes it is possible to talk about unique cones in the derived
category. For a distinguished triangle
$A^\bullet \xrightarrow{u} B^\bullet \xrightarrow{v} C^\bullet \xrightarrow{w} A^\bullet[1]$
assume that $A^\bullet$ is a complex such that $H^i (A^\bullet)$ are finite
dimensional $\QQ$-vector spaces and $C^\bullet$ is ``almost perfect'', meaning
that $H^i (C^\bullet)$ are finitely generated groups, zero for $i \ll 0$ and
have only $2$-torsion for $i \gg 0$. Then the cone of $u$ is unique up to a
unique isomorphism in the derived category.
\item[VII.] If $A$ and $B$ are finitely generated abelian groups, then up to
equivalence, every extension of $\Hom (B,\QQ/\ZZ)$ by $\Hom (A,\QQ/\ZZ)$ is
$\QQ/\ZZ$-dual to an extension of $A$ by $B$.
\item[VIII.] The order of zero of the Dedekind zeta function of a number field
$K$ at $n < 0$ may be interpreted via the equivariant cohomology of
$X = \Spec \O_K$ as
$\ord_{s = n} \zeta_K (s) = \dim_\RR H^0_c (G_\RR, X (\CC), (2\pi i)^n\,\RR)$.
\end{enumerate}
\end{document}