-
Notifications
You must be signed in to change notification settings - Fork 0
/
beshenov-weil-etale-1-dim.tex
1785 lines (1560 loc) · 76.5 KB
/
beshenov-weil-etale-1-dim.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{amsart}
\usepackage{amsmath,amssymb}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Zeta-values of one-dimensional arithmetic schemes at strictly negative integers}
\author{Alexey Beshenov}
\date{}
\keywords{Weil-étale cohomology, motivic cohomology, special values of zeta-functions}
\subjclass[2020]{Primary 19F27, Secondary 14F20, 14F42}
\email{cadadr@gmail.com}
% Mathematics Subject Classification 2020:
% 19F27 Étale cohomology, higher regulators, zeta and L-functions (K-theoretic aspects)
% 14F20 Étale and other Grothendieck topologies and (co)homologies
% 14F42 Motivic cohomology; motivic homotopy theory
\renewcommand\leftmark{A. BESHENOV}
\renewcommand\rightmark{ZETA-VALUES OF 1D ARITHM. SCHEMES AT N$<$0}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\fchar}{char}
\DeclareMathOperator{\Fil}{Fil}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Isom}{Isom}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\rk}{rk}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Tot}{Tot}
\DeclareMathOperator{\vol}{vol}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\CC}{\mathbb{C}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\PP}{\mathbb{P}}
\DeclareMathOperator{\Gr}{Gr}
\newcommand{\Parf}{\mathcal{P}\!\text{\it arf}}
% force \nolimits on \det:
\renewcommand{\det}{\operatorname{det}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\ar}{\text{\it ar}}
\newcommand{\BM}{\text{\it BM}}
\newcommand{\codiv}{\text{\it codiv}}
\newcommand{\DB}{{\mathcal{D}\text{-}\mathcal{B}}}
\renewcommand{\div}{\text{\it div}}
\newcommand{\dR}{\text{\it dR}}
\newcommand{\et}{\text{\it \'{e}t}}
\newcommand{\fg}{\text{\it fg}}
\newcommand{\is}{\text{\it is}}
\newcommand{\red}{\text{\it red}}
\newcommand{\tors}{\text{\it tors}}
\newcommand{\Wc}{\text{\it W,c}}
\newcommand{\Zar}{\text{\it Zar}}
\newcommand{\dfn}{\mathrel{\mathop:}=}
\newcommand{\rdfn}{=\mathrel{\mathop:}}
\newcommand{\iHom}{\underline{\Hom}}
\newcommand{\RHom}{R\!\Hom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{tikz-cd}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}
\usetikzlibrary{babel}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{patterns}
\newcommand{\tikzpb}{\ar[phantom,pos=0.2]{dr}{\text{\large$\lrcorner$}}}
\newcommand{\tikzpbur}{\ar[phantom,pos=0.2]{dl}{\text{\large$\llcorner$}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{hyperref}
\hypersetup{
final,
colorlinks,
linkcolor={black},
citecolor={black},
urlcolor={black}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsthm}
\newtheoremstyle{myplain}
{\topsep} % ABOVESPACE
{\topsep} % BELOWSPACE
{\itshape} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\scshape} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{myplain}
\newtheorem{maintheorem}{Theorem}
\renewcommand*{\themaintheorem}{\Roman{maintheorem}}
\newtheorem*{maintheorem*}{Main theorem}
\newtheorem*{thetheorem*}{Theorem}
\newtheorem*{proposition*}{Proposition}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheoremstyle{mydefinition}
{\topsep} % ABOVESPACE
{\topsep} % BELOWSPACE
{} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\scshape} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{mydefinition}
\newtheorem*{conjecture*}{Conjecture}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
\begin{abstract}
Let $X$ be an arithmetic scheme (i.e., separated, of finite type over
$\Spec \ZZ$) of Krull dimension $1$. For the associated zeta function
$\zeta (X,s)$, we write down a formula for the special value at $s = n < 0$ in
terms of the \'{e}tale motivic cohomology of $X$ and a regulator. We prove it
in the case when for each generic point $\eta \in X$ with
$\fchar \kappa (\eta) = 0$, the extension $\kappa (\eta)/\QQ$ is
abelian. We conjecture that the formula holds for any one-dimensional
arithmetic scheme.
This is a consequence of the Weil-\'{e}tale formalism developed by the author
in \cite{Beshenov-Weil-etale-1} and \cite{Beshenov-Weil-etale-2}, following
the work of Flach and Morin \cite{Flach-Morin-2018}. We also calculate the
Weil-\'{e}tale cohomology of one-dimensional arithmetic schemes and show that
our special value formula is a particular case of the main conjecture from
\cite{Beshenov-Weil-etale-2}.
\end{abstract}
% \tableofcontents
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
Let $X$ be an \textbf{arithmetic scheme}, by which we mean in this text that it
is separated and of finite type over $\Spec \ZZ$. The \textbf{zeta function}
associated to $X$ (see, e.g. \cite{Serre-1965}) is given by
\[ \zeta (X,s) \dfn \prod_{\substack{x \in X \\ \text{closed pt.}}}
\frac{1}{1 - N (x)^{-s}}, \]
where the norm of a closed point $x\in X$ is the size of the corresponding
residue field:
$$N (x) \dfn |\kappa (x)| \dfn |\mathcal{O}_{X,x}/\mathfrak{m}_{X,x}|$$
The above product converges for $\Re s > \dim X$ and is supposed to have a
meromorphic continuation to the whole complex plane. Although the latter is a
wide-open conjecture in general, it is well-known for one-dimensional schemes,
which is the case of interest in this article.
If $\zeta (X,s)$ admits a meromorphic continuation around $s = n$, we denote by
\begin{equation}
\label{eqn:vanishing-order}
d_n \dfn \ord_{s=n} \zeta (X,s)
\end{equation}
the \textbf{vanishing order} of $\zeta (X,s)$ at $s = n$. The corresponding
\textbf{special value} of $\zeta (X,s)$ at $s = n$ is defined as the leading
nonzero coefficient of the Taylor expansion:
$$\zeta^* (X,n) \dfn \lim_{s \to n} (s - n)^{-d_n}\,\zeta (X,s).$$
Since the 19th century, many formulas (both conjectural and unconditional) have
been proposed to interpret the numbers $\zeta^* (X,n)$ in terms of geometric and
algebraic invariants attached to $X$. A primordial example is Dirichlet's
\textbf{analytic class number formula}. For a number field $F/\QQ$, we denote by
$\mathcal{O}_F$ the corresponding ring of integers. Then
$$\zeta_F (s) \dfn \zeta (\Spec \mathcal{O}_F, s)$$
is the \textbf{Dedekind zeta function} attached to $F$. From the well-known
functional equation for $\zeta_F (s)$, it is easy to see that it has a zero at
$s = 0$ of order $r_1 + r_2 - 1$, where $r_1$ (resp. $2 r_2$) is the number of
real embeddings $F \hookrightarrow \RR$ (resp. complex embeddings
$F \hookrightarrow \CC$). The corresponding special value at $s = 0$ is given by
\begin{equation}
\label{eqn:zeta-F-at-s=0}
\zeta^*_F (0) = -\frac{h_F}{\omega_F}\,R_F,
\end{equation}
where $h_F = |\Pic (\mathcal{O}_F)|$ is the class number,
$\omega_F = |(\mathcal{O}_F)^\times_\tors|$ is the number of roots of unity in
$F$, and $R_F \in \RR$ is the regulator. See, e.g.,
\cite[Chapter~5, \S 1]{Borevich-Shafarevich} or \cite[\S VII.5]{Neukirch-1999}.
The question naturally arises whether there are formulas similar to
\eqref{eqn:zeta-F-at-s=0} for $s = n \in \ZZ$ other than $s = 0$ (or $s = 1$,
which is related to $s = 0$ via the functional equation). To do this, one must
find a suitable generalization for the numbers $h_F$, $\omega_F$, $R_F$. Many
special value conjectures of varying generality go back to this question.
Lichtenbaum proposed formulas in terms of algebraic $K$-theory in his pioneering
work \cite{Lichtenbaum-1973}. Later these were also reformulated in terms of
$p$-adic cohomology $H^i (\Spec \mathcal{O}_F [1/p]_\et, \ZZ_p (n))$ for
$i = 1,2$ and all primes $p$; the corresponding formula is known as the
\textbf{cohomological Lichtenbaum conjecture}; see, for example,
\cite[\S 1.7]{Huber-Kings-2003} for the statement and a proof for abelian number
fields $F/\QQ$. We will not go into details here, since it is more convenient
for us to use motivic cohomology instead of working with $p$-adic cohomology for
varying $p$.
A suitable generalization of $R_F$ are the \textbf{higher regulators} considered
since the work of Borel \cite{Borel-1977} and later by Beilinson
\cite{Beilinson-1984}.
We do not attempt to give an adequate historical survey of the subject or to
write down all the conjectured formulas; the interested reader may consult,
e.g., \cite{Kolster-2004,Goncharov-2005,Kahn-2005}.
\vspace{1em}
Later, Lichtenbaum proposed a new research program known as
\textbf{Weil-\'{e}tale cohomology}; see
\cite{Lichtenbaum-2005,Lichtenbaum-2009-Euler-char,Lichtenbaum-2009-number-rings,Lichtenbaum-2021}.
It suggests that for an arithmetic scheme $X$ the special value of $\zeta (X,s)$
at $s = n \in \ZZ$ can be expressed in terms of the Weil-\'{e}tale cohomology,
which is a suitable modification of the \'{e}tale motivic cohomology of $X$.
Flach and Morin in \cite{Flach-Morin-2018} gave a construction of Weil-\'{e}tale
cohomology groups $H^i_\Wc (X,\ZZ(n))$ for a proper and regular arithmetic
scheme $X$, and stated a precise conjectural relation of $H^i_\Wc (X,\ZZ(n))$ to
the special value $\zeta^* (X,n)$.
In \cite[\S 5.8.3]{Flach-Morin-2018} they write down an explicit formula for the
case of $X = \Spec \mathcal{O}_F$. For $n \le 0$ and in terms of cohomology
groups $H^i (X_\et, \ZZ^c (n))$, it reads
\begin{equation}
\label{eqn:flach-morin-zeta-F-formula}
\zeta_F^* (n) = \pm\frac{|H^0 (X_\et, \ZZ^c (n))|}{|H^{-1} (X_\et, \ZZ^c (n))_\tors|}\,R_{F,n}
\quad \text{for }n \le 0.
\end{equation}
The definition of $H^i (X_\et, \ZZ^c (n))$ is reviewed below.
The regulator $R_{F,n} = R_{\Spec \mathcal{O}_F,n}$ is defined in
\S\ref{sec:regulators}.
By \cite[Proposition~5.35]{Flach-Morin-2018}, formula
\eqref{eqn:flach-morin-zeta-F-formula} holds unconditionally for abelian number
fields $F/\QQ$, via a reduction to the \textbf{Tamagawa number conjecture} of
Bloch--Kato--Fontaine--Perrin-Riou.
In particular, if we take $n = 0$, then $\ZZ^c (0) \cong \mathbb{G}_m [1]$, and
$R_{F,0}$ is the usual Dirichlet regulator, so
\eqref{eqn:flach-morin-zeta-F-formula} becomes the classical formula
\eqref{eqn:zeta-F-at-s=0}:
$$\zeta_F^* (0) =
\pm \frac{|H^1 (\Spec \mathcal{O}_{F,\et}, \mathbb{G}_m)|}{|H^0 (\Spec \mathcal{O}_{F,\et}, \mathbb{G}_m)_\tors|}\,R_F =
\pm \frac{|\Pic (\mathcal{O}_F)|}{|(\mathcal{O}_F)^\times_\tors|}\,R_F.$$
We also mention that Flach and Morin have a similar special value formula for
$n > 0$, which includes a correction factor $C (X,n) \in \QQ$. In this text we
will say nothing about the case of $n > 0$; the reader can consult
\cite{Flach-Morin-2018} for more details, and also the subsequent papers
\cite{Flach-Morin-2020-Muenster,Flach-Morin-2021,Morin-2021-THH} which shed
light on the nature of the correction factor $C (X,n)$.
For $n < 0$, the author in \cite{Beshenov-Weil-etale-1} and
\cite{Beshenov-Weil-etale-2} extended the work of Flach and Morin
\cite{Flach-Morin-2018} to an arbitrary arithmetic scheme $X$ (thus removing the
assumption that $X$ is proper or regular). In this text, we would like to work
out explicitly the corresponding special value formula for one-dimensional
arithmetic schemes.
\vspace{1em}
To state the main result, it is useful to introduce the following terminology.
\begin{definition}
\label{dfn:abelian-scheme}
We say that a one-dimensional arithmetic scheme $X$ is \textbf{abelian} if
each generic point $\eta \in X$ with $\fchar \kappa (\eta) = 0$ corresponds to
an abelian extension $\kappa (\eta)/\QQ$.
\end{definition}
If $X$ lives in positive characteristic, then it is trivially abelian.
The term ``abelian'' is ad hoc and was suggested by analogy with the notion of
\textbf{abelian number fields}. Hopefully there is no confusion with the
``abelian schemes'' that are generalizations of abelian varieties.
Our goal is to prove the following result.
\begin{theorem}
\label{main-theorem}
For an abelian one-dimensional arithmetic scheme $X$, the special value of
$\zeta (X,s)$ at $s = n < 0$ is given by
\begin{equation}
\label{eqn:special-value-formula}
\zeta^* (X,n) =
\pm 2^\delta\,\frac{|H^0 (X_\et, \ZZ^c (n))|}{|H^{-1} (X_\et, \ZZ^c (n))_\tors| \cdot |H^1 (X_\et, \ZZ^c (n))|}\,R_{X,n}.
\end{equation}
Here
\begin{itemize}
\item $H^i (X_\et, \ZZ^c (n))$ the \'{e}tale motivic cohomology
from \cite{Geisser-2010};
\item the correction factor $2^\delta$ is given by
\begin{equation}
\label{eqn:delta}
\delta = \delta_{X,n} =
\begin{cases}
r_1, & n \text{ even}, \\
0, & n \text{ odd},
\end{cases}
\end{equation}
where $r_1 = |X (\RR)|$ is the number of real places of $X$,
\item $R_{X,n}$ is a positive real number defined
via a regulator map in \S\ref{sec:regulators}.
\end{itemize}
\end{theorem}
We further conjecture that formula \eqref{eqn:special-value-formula} holds for
all one-dimensional arithmetic schemes, not necessarily abelian. This is
equivalent to the Tamagawa number conjecture for non-abelian number fields
(see Remark~\ref{rmk:TNC}).
\vspace{1em}
We give two proofs of \eqref{eqn:special-value-formula}: first a direct argument
in \S\ref{sec:direct-proof} and then an argument in terms of Weil-\'{e}tale
cohomology in \S\ref{sec:Weil-etale-proof}. In fact, we note that the special
value formula is the same as the conjecture $\mathbf{C} (X,n)$ formulated in
\cite{Beshenov-Weil-etale-2}, which is specialized to one-dimensional $X$ and
spelled out explicitly.
The purpose of this text is twofold. First, we establish a new special value
formula, which generalizes several formulas found in the literature. Second, we
review the construction of Weil-\'{e}tale cohomology $H^i_\Wc (X, \ZZ(n))$ from
\cite{Beshenov-Weil-etale-1} and the special value conjecture from
\cite{Beshenov-Weil-etale-2} and explain it in the case of one-dimensional
schemes. It is not very surprising that a special value formula like
\eqref{eqn:special-value-formula} exists, but the right cohomological invariants
to state it have been suggested by the Weil-\'{e}tale framework.
This text was inspired in part by the work of Jordan and Poonen
\cite{Jordan-Poonen-2020}, which deals with a formula for $\zeta^* (X,1)$, where
$X$ is an affine reduced one-dimensional arithmetic scheme. The affine and
reduced constraint does not appear in our case because work with different
invariants. Since $\zeta (X,s) = \zeta (X_\red, s)$, the ``right'' invariants
should not distinguish between $X$ and $X_\red$, and motivic cohomology
satisfies this property.
\subsection*{Notation and conventions}
\paragraph{Abelian groups.}
For an abelian group $A$, we denote
\begin{align*}
A^D & \dfn \Hom (A, \QQ/\ZZ), \\
A^* & \dfn \Hom (A, \ZZ).
\end{align*}
There is an exact sequence
\begin{equation}
\label{eqn:exact-sequence-A*-etc}
0 \to A^* \to \Hom (A,\QQ) \to A^D \to (A_\tors)^D \to 0
\end{equation}
Note that for a finite rank group $A$, the $\ZZ$-dual $A^*$ is free and has the same
rank. If $A$ is finite, then there is a (non-canonical) isomorphism with the
$\QQ/\ZZ$-dual $A \cong A^D$, and in particular $|A^D| = |A|$.
\paragraph{Schemes.}
In this text, $X$ always denotes a \textbf{one-dimensional arithmetic scheme},
i.e., a separated scheme of finite type $X \to \Spec \ZZ$ of Krull dimension
$1$.
We remark that the restriction that $X$ is abelian
(Definition~\ref{dfn:abelian-scheme}) is needed only for the
proofs of Theorem~\ref{main-theorem} in \S\ref{sec:direct-proof} and
\S\ref{sec:Weil-etale-proof}. Our calculations in
\S\S\ref{sec:vanishing-order},
\ref{sec:GR-equivariant-cohomology},
\ref{sec:etale-motivic-cohomology},
\ref{sec:regulators},
\ref{sec:Weil-etale-cohomology-of-X}
work for any one-dimensional arithmetic scheme $X$.
\paragraph{Weights.}
In this text, $n$ always stands for a fixed, \emph{strictly negative} integer.
\paragraph{Motivic cohomology.}
We will work with a version of \'{e}tale motivic cohomology defined in terms of
\textbf{Bloch's cycle complexes}. These were introduced by Bloch in
\cite{Bloch-1986} for varieties over fields, and for the version over
$\Spec \ZZ$ see \cite{Geisser-2004-Dedekind,Geisser-2005}.
In short, we let $\Delta^i = \Spec \ZZ [t_0,\ldots,t_i] / (1 - \sum_i t_i)$ be
the algebraic simplex. Denote by $z_n (X, i)$ the group freely generated by
algebraic cycles $Z \subset X \times \Delta^i$ of dimension $n+i$ that intersect
the faces properly. For $n < 0$ we consider the complex of sheaves on $X_\et$
$$\ZZ^c (n) \dfn z_n (\text{\textvisiblespace}, -\bullet) [2n].$$
The corresponding (hyper)cohomology
$$H^i (X_\et, \ZZ^c (n)) \dfn H^i (R\Gamma (X_\et, \ZZ^c (n)))$$
is what we will call in this text \textbf{(\'{e}tale) motivic cohomology}.
For a proper regular arithmetic scheme $X$ of pure dimension $d$ we have
\begin{equation}
\label{eqn:Zc(n)-vs-Z(d-n)}
\ZZ^c (n) \cong \ZZ (d-n) [2d],
\end{equation}
where $\ZZ (m)$ is the other motivic complex that usually appears in the
literature; see \cite{Geisser-2004-Dedekind,Geisser-2005} for the definition.
To avoid any confusion, all our calculations will be in terms of $\ZZ^c (n)$.
By \cite[Corollary~7.2]{Geisser-2010}, the groups $H^i (X_\et, \ZZ^c (n))$
satisfy the \textbf{localization property}: if $Z \subset X$ is a closed
subscheme and $U = X\setminus Z$ is its open complement, then there is a
distinguished triangle
\[ R\Gamma (Z_\et, \ZZ^c (n)) \to
R\Gamma (X_\et, \ZZ^c (n)) \to
R\Gamma (U_\et, \ZZ^c (n)) \to
R\Gamma (Z_\et, \ZZ^c (n)) [1], \]
giving a long exact sequence
\begin{multline}
\label{eqn:localization-les}
\cdots \to H^i (Z_\et, \ZZ^c (n)) \to
H^i (X_\et, \ZZ^c (n)) \to
H^i (U_\et, \ZZ^c (n)) \to \\
H^{i+1} (Z_\et, \ZZ^c (n)) \to \cdots
\end{multline}
This means that $H^i (-, \ZZ^c (n))$ behaves like (motivic) Borel--Moore
homology.
At the level of zeta functions, the localization property corresponds to the
identity
$$\zeta (X,s) = \zeta (Z,s)\,\zeta (U,s).$$
For more results on $\ZZ^c (n)$, we refer the reader to \cite{Geisser-2010}.
In general, the groups $H^i (X_\et, \ZZ^c (n))$ are very hard to
compute. However, they are quite well understood for one-dimensional arithmetic
schemes $X$; see \S\ref{sec:etale-motivic-cohomology} below.
\subsection*{Outline of the paper}
In \S\ref{sec:devissage} we prove a d\'{e}vissage lemma that shows how a
property that holds for curves over finite fields and for number rings can be
generalized to any one-dimensional arithmetic scheme. It is an elementary
argument, isolated to avoid repeating the same reasoning in several proofs.
In \S\ref{sec:vanishing-order} we calculate the vanishing order of $\zeta (X,s)$
at $s = n < 0$. Then in \S\ref{sec:GR-equivariant-cohomology} we calculate the
$G_\RR$-equivariant cohomology groups of the finite discrete space of complex
points $X(\CC)$. In \S\ref{sec:etale-motivic-cohomology} we put together various
well-known results to describe the motivic cohomology groups
$H^i (X_\et, \ZZ^c(n))$. In \S\ref{sec:regulators} we define the regulator that
appears in the special value formula.
Our first ``elementary'' proof of the main result is given in
\S\ref{sec:direct-proof}. Then \S\ref{sec:Weil-etale-cohomology-of-X} is devoted
to a calculation of the Weil-\'{e}tale cohomology groups $H^i_\Wc (X, \ZZ(n))$
from \cite{Beshenov-Weil-etale-1} for one-dimensional $X$, which we consider an
interesting result on its own. We use these calculations in
\S\ref{sec:Weil-etale-proof} to formulate explicitly the conjecture
$\mathbf{C} (X,n)$ from \cite{Beshenov-Weil-etale-2}, again for one-dimensional
$X$. This is a second, more conceptual proof of the main result, and it explains
how we arrived at \eqref{eqn:special-value-formula} in the first place.
Finally, we conclude in \S\ref{sec:examples} with a couple of examples showing
how our special value formula works.
\subsection*{Acknowledgments}
I am grateful to Baptiste Morin for various discussions that led to this work.
I also thank the anonymous referee for revising a preliminary version
of this text and spotting some inaccuracies.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{D\'{e}vissage lemma for one-dimensional schemes}
\label{sec:devissage}
The main idea of this paper is to consider a property that holds for spectra of
number rings $X = \Spec \mathcal{O}_F$ and curves over finite fields $X/\FF_q$,
and then generalize it formally to any one-dimensional arithmetic scheme.
To this end, in this section we isolate a d\'{e}vissage argument which will be
used repeatedly in the rest of the paper.
\begin{lemma}
\label{lemma:devissage}
Let $\mathcal{P}$ be a property of arithmetic schemes of Krull dimension
$\le 1$. Suppose that it satisfies the following compatibilities.
\begin{enumerate}
\item[a)] $\mathcal{P} (X)$ holds if and only if $\mathcal{P} (X_\red)$ holds.
\item[b)] If $X = \coprod_i X_i$ is a finite disjoint union, then
$\mathcal{P} (X)$ is equivalent to the conjunction of $\mathcal{P} (X_i)$ for
all $i$.
\item[c)] If $U \subset X$ is a dense open subscheme, then $\mathcal{P} (X)$
is equivalent to $\mathcal{P} (U)$.
\end{enumerate}
Suppose that
\begin{enumerate}
\item[0)] $\mathcal{P} (\Spec \FF_q)$ holds for any finite field $\FF_q$,
\item[1)] $\mathcal{P} (X)$ holds for any smooth curve $X/\FF_q$,
\item[2)] $\mathcal{P} (\Spec \mathcal{O}_F)$ holds for any number field
$F/\QQ$.
\end{enumerate}
Then $\mathcal{P} (X)$ holds for any one-dimensional arithmetic scheme $X$.
\begin{proof}
First suppose that $\dim X = 0$. Then, thanks to a), we can assume that $X$
is reduced, and then $X = \coprod_i \Spec \FF_{q,i}$ is a finite disjoint
union of spectra of finite fields such that $\mathcal{P} (X)$ holds thanks
to 0) and b).
Now consider the case of $\dim X = 1$. Again, we can assume that $X$ is
reduced. We take the normalization $\nu\colon X' \to X$. This is a
birational morphism: there are dense open subschemes $U \subset X$ and
$U' \subset X'$ such that
$\left.\nu\right|_{U'}\colon U' \xrightarrow{\cong} U$ is an
isomorphism. Thanks to c), we have
\[ \mathcal{P} (X) \iff
\mathcal{P} (U) \iff
\mathcal{P} (U') \iff
\mathcal{P} (X'). \]
Therefore, we can assume that $X$ is regular. Now $X = \coprod_i X_i$ is a
finite disjoint union of normal integral schemes, so thanks to b), we can
assume that $X$ is integral. There are two cases.
\begin{itemize}
\item If $X \to \Spec \ZZ$ lives over a closed point, then it is a smooth
curve over $\FF_q$, and the claim holds thanks to 1).
\item If $X \to \Spec \ZZ$ is a dominant morphism, consider an open affine
neighborhood of the generic point $U \subset X$. Again, $\mathcal{P} (X)$
is equivalent to $\mathcal{P} (U)$, so it suffices to prove the claim for
$U$. We have $U = \Spec \mathcal{O}_{F,S}$ for a number field $F/\QQ$ and
a finite set of places $S$, so everything reduces to
$\mathcal{P} (\Spec \mathcal{O}_F)$. \qedhere
\end{itemize}
\end{proof}
\end{lemma}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Vanishing order of $\zeta (X,s)$ at $s = n < 0$}
\label{sec:vanishing-order}
\begin{definition}[Numbers $r_1$ and $r_2$]
Given a one-dimensional arithmetic scheme $X$, consider the finite discrete
space of complex points
$$X(\CC) \dfn \Hom (\Spec \CC, X).$$
There is a canonical action of the complex conjugation
$G_\RR \dfn \Gal (\CC/\RR)$ on $X(\CC)$. The fixed points of this action
correspond to the real points $X (\RR)$, also known as the
\textbf{real places}. We set $r_1 = |X (\RR)|$. The non-real places are called
\textbf{complex places}. They come in conjugate pairs, and we denote their
number by $2 r_2$.
\end{definition}
\begin{figure}
\[ \begin{tikzpicture}
\matrix(m)[matrix of math nodes, row sep=1em, column sep=1em,text height=1ex, text depth=0.2ex]{
~ & ~ & ~ & ~ & ~ & \bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \cdots & \bullet \\
~ & ~ & ~ & ~ & ~ & \bullet & \bullet & \cdots & \bullet \\};
\draw[->] (m-2-1) edge[loop above,min distance=10mm] (m-2-1);
\draw[->] (m-2-2) edge[loop above,min distance=10mm] (m-2-2);
\draw[->] (m-2-4) edge[loop above,min distance=10mm] (m-2-4);
\draw[->] (m-1-6) edge[bend left] (m-3-6);
\draw[->] (m-1-7) edge[bend left] (m-3-7);
\draw[->] (m-1-9) edge[bend left] (m-3-9);
\draw[->] (m-3-6) edge[bend left] (m-1-6);
\draw[->] (m-3-7) edge[bend left] (m-1-7);
\draw[->] (m-3-9) edge[bend left] (m-1-9);
\draw [decorate,decoration={brace,amplitude=5pt,mirror}] ($(m-3-1)+(-0.5em,-0.5em)$) -- ($(m-3-4)+(0.5em,-0.5em)$);
\draw [decorate,decoration={brace,amplitude=5pt,mirror}] ($(m-3-6)+(-0.5em,-0.5em)$) -- ($(m-3-9)+(0.5em,-0.5em)$);
\draw ($(m-3-1)!.5!(m-3-4)$) node[yshift=-2em,anchor=base] {$r_1$ points};
\draw ($(m-3-6)!.5!(m-3-9)$) node[yshift=-2em,anchor=base] {$2 r_2$ points};
\end{tikzpicture} \]
\caption{$G_\RR \dfn \Gal (\CC/\RR)$ acting on $X (\CC)$}
\label{fig:complex-conjugation-on-X(C)}
\end{figure}
Equivalently, for a number field $F/\QQ$, denote by $r_1 (F)$ the number of real
embeddings $F \hookrightarrow \RR$ and by $r_2 (F)$ the number of pairs of
complex embeddings $F \hookrightarrow \CC$. Then $r_1 (F) = r_1$ and
$r_2 (F) = r_2$ for $X = \Spec \mathcal{O}_F$. In general, for a one-dimensional
arithmetic scheme $X$, we have
\begin{align*}
r_1 & = \sum_{\fchar \kappa (\eta) = 0} r_1 (\kappa (\eta)), \\
r_2 & = \sum_{\fchar \kappa (\eta) = 0} r_2 (\kappa (\eta)),
\end{align*}
where the sums are over generic points $\eta \in X$ with residue field
$\kappa (\eta)$ of characteristic $0$.
\begin{proposition}
\label{prop:vanishing-order-equals-dn}
Let $X$ be a one-dimensional arithmetic scheme with $r_1$ real and $2r_2$
complex places. For $n < 0$, the vanishing order of $\zeta (X,s)$ at $s = n$
is given by
\begin{equation}
\label{eqn:dn}
d_n = \ord_{s = n} \zeta (X,s) =
\begin{cases}
r_1 + r_2, & n\text{ even}, \\
r_2, & n\text{ odd}.
\end{cases}
\end{equation}
\begin{proof}
For $X = \Spec \mathcal{O}_F$ the claim is a well-known consequence of the
functional equation for the Dedekind zeta function
\cite[\S VII.5]{Neukirch-1999}. It also holds for $X/\FF_q$ since in this
case $\zeta (X,s)$ has no zeros or poles at $s = n < 0$ according to
\cite[pp.\,26--27]{Katz-1994}. We now proceed using
Lemma~\ref{lemma:devissage}.
We have $\zeta (X,s) = \zeta (X_\red,s)$ and
$r_{1,2} (X) = r_{1,2} (X_\red)$.
If $X = \coprod_i X_i$ is a finite disjoint union, then
\begin{align*}
\ord_{s = n} \zeta (X,s) & = \sum_i \ord_{s = n} \zeta (X_i,s), \\
r_{1,2} (X) & = \sum_i r_{1,2} (X_i),
\end{align*}
so that the property is compatible with disjoint unions. Finally, if
$U \subset X$ is a dense open subscheme, then $Z = X\setminus U$ is a
zero-dimensional scheme, and
\begin{align*}
\ord_{s = n} \zeta (X,s) & = \ord_{s = n} \zeta (U,s), \\
r_{1,2} (X) & = r_{1,2} (U),
\end{align*}
so that the property is compatible with taking dense open subschemes.
We conclude that Lemma~\ref{lemma:devissage} applies.
\end{proof}
\end{proposition}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{$G_\RR$-equivariant cohomology of $X(\CC)$}
\label{sec:GR-equivariant-cohomology}
Viewing $\ZZ (n) \dfn (2\pi i)^n\,\ZZ$ as a constant $G_\RR$-equivariant sheaf
on $X(\CC)$, we consider the $G_\RR$-equivariant cohomology groups (resp. Tate
cohomology)
\begin{align*}
H^i_c (G_\RR, X(\CC), \ZZ(n)) & \dfn H^i \Bigl(R\Gamma (G_\RR, R\Gamma_c (X(\CC), \ZZ(n)))\Bigr), \\
\widehat{H}^i_c (G_\RR, X(\CC), \ZZ(n)) & \dfn H^i \Bigl(R\widehat{\Gamma} (G_\RR, R\Gamma_c (X(\CC), \ZZ(n)))\Bigr).
\end{align*}
Of course, $X(\CC)$ is just a finite discrete space, so it is not necessary to
use cohomology with compact support, but we use this notation for consistency
with the general case considered in \cite{Beshenov-Weil-etale-1}. Since
$\dim X(\CC) = 0$, we have
\begin{align*}
H^i_c (G_\RR, X(\CC), \ZZ(n)) & \cong H^i (G_\RR, H^0_c (X(\CC), \ZZ(n))), \\
\widehat{H}^i_c (G_\RR, X(\CC), \ZZ(n)) & \cong \widehat{H}^i (G_\RR, H^0_c (X(\CC), \ZZ(n))).
\end{align*}
\begin{proposition}
Let $X$ be a one-dimensional arithmetic scheme with $r_1$ real places.
Then the $G_\RR$-equivariant cohomology of $X(\CC)$ is
\begin{align}
\label{eqn:Tate-GR-cohomology-of-X(C)}
\widehat{H}^i_c (G_\RR, X(\CC), \ZZ (n)) & \cong
\begin{cases}
(\ZZ/2\ZZ)^{\oplus r_1}, & i \equiv n ~ (2), \\
0, & i \not\equiv n ~ (2);
\end{cases} \\
\label{eqn:usual-GR-cohomology-of-X(C)}
H^i_c (G_\RR, X(\CC), \ZZ (n)) & \cong
\begin{cases}
0, & i < 0, \\
\ZZ^{\oplus d_n}, & i = 0, \\
\widehat{H}^i_c (G_\RR, X(\CC), \ZZ (n)), & i \ge 1.
\end{cases}
\end{align}
Here $d_n$ is the vanishing order given by \eqref{eqn:dn}.
\begin{proof}
We have
\[ H^0_c (X(\CC), \ZZ(n)) \cong
\ZZ (n)^{\oplus r_1} \oplus (\ZZ (n) \oplus \ZZ (n))^{\oplus r_2}, \]
and the $G_\RR$-action on the two summands is given by
$x \mapsto \overline{x}$ and $(x,y) \mapsto (\overline{y}, \overline{x})$,
respectively. (See Figure~\eqref{fig:complex-conjugation-on-X(C)}.)
We recall that the Tate cohomology of a finite cyclic group is $2$-periodic:
\[ \widehat{H}^i (G,A) \cong
\begin{cases}
\widehat{H}^0 (G,A), & i\text{ even}, \\
\widehat{H}_0 (G,A), & i\text{ odd},
\end{cases} \]
and the groups $\widehat{H}^0 (G,A)$ and $\widehat{H}_0 (G,A)$ are given by
the exact sequence
\[ 0 \to \widehat{H}_0 (G,A) \to
A_G \xrightarrow{N} A^G \to
\widehat{H}^0 (G,A) \to 0 \]
where $N$ is the norm map induced by the action of $\sum_{g\in G} g$.
\vspace{1em}
Therefore, we can consider two cases.
\begin{enumerate}
\item[1)] \textbf{$G_\RR$-module $A = \ZZ (n)$ with the action via
$x \mapsto \overline{x}$.}
In this case, we see that
\[ A^{G_\RR} \cong
\begin{cases}
\ZZ, & n\text{ even}, \\
0, & n\text{ odd}.
\end{cases} \]
Similarly, it is straightforward to calculate the coinvariants
$A_{G_\RR}$, and
\[ \widehat{H}^0 (G_\RR, A) \cong
\begin{cases}
\ZZ/2\ZZ, & n\text{ even},\\
0, & n\text{ odd},
\end{cases} \quad
\widehat{H}_0 (G_\RR, A) \cong
\begin{cases}
0, & n\text{ even},\\
\ZZ/2\ZZ, & n\text{ odd}.
\end{cases} \]
\item[2)] \textbf{$G_\RR$-module $A = \ZZ (n) \oplus \ZZ (n)$ with the
action via $(x,y) \mapsto (\overline{y}, \overline{x})$}.
In this case $A^{G_\RR} \cong \ZZ$ and
$\widehat{H}^0 (G_\RR,A) = \widehat{H}_0 (G_\RR,A) = 0$.
\end{enumerate}
Combining these two calculations, we obtain Tate cohomology groups
\eqref{eqn:Tate-GR-cohomology-of-X(C)}. For the usual cohomology
\eqref{eqn:usual-GR-cohomology-of-X(C)}, we have
\begin{align*}
H^0_c (G_\RR, X(\CC), \ZZ (n)) & \cong H^0_c (X(\CC), \ZZ (n))^{G_\RR}, \\
H^i_c (G_\RR, X(\CC), \ZZ (n)) & \cong \widehat{H}^i_c (G_\RR, X(\CC), \ZZ (n)) \quad \text{for }i \ge 1. \qedhere
\end{align*}
\end{proof}
\end{proposition}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{\'{E}tale motivic cohomology of one-dimensional schemes}
\label{sec:etale-motivic-cohomology}
In this section we review the structure of the \'{e}tale motivic cohomology
$H^i (X_\et, \ZZ^c(n))$ for one-dimensional $X$ and $n < 0$. What follows is
fairly well-known, so we claim no originality here, but we compile the
references and state the result for a general one-dimensional arithmetic scheme.
\begin{proposition}
\label{prop:structure-of-motivic-cohomology}
If $X$ is a one-dimensional arithmetic scheme and $n < 0$, then
\begin{equation}
\label{eqn:structure-of-motivic-cohomology}
H^i (X_\et, \ZZ^c (n)) \cong
\begin{cases}
0, & i < -1, \\
\text{finitely generated of rk } d_n, & i = -1, \\
\text{finite}, & i = 0,1, \\
(\ZZ/2\ZZ)^{\oplus r_1}, & i \ge 2, ~ i\not\equiv n ~ (2), \\
0, & i \ge 2, ~ i\equiv n ~ (2).
\end{cases}
\end{equation}
Here $d_n$ is given by \eqref{eqn:dn} and $r_1 = |X (\RR)|$ is the number of
real places of $X$. Further, if $X = \Spec \mathcal{O}_F$ for a number field
$F/\QQ$, then
\begin{equation}
\label{eqn:2-torsion-in-H1-Zc-for-Spec-OF}
H^1 (X_\et, \ZZ^c (n)) \cong
\begin{cases}
(\ZZ/2\ZZ)^{\oplus r_1}, & n\text{ even}, \\
0, & n \text{ odd}.
\end{cases}
\end{equation}
\end{proposition}
An important ingredient of our proof is the arithmetic duality
\cite[Theorem~I]{Beshenov-Weil-etale-1}, which states that if
$H^i (X_\et, \ZZ^c (n))$ are finitely generated groups for all $i \in \ZZ$, then
\begin{equation}
\label{eqn:arithmetic-duality}
\widehat{H}^i_c (X_\et, \ZZ (n)) \cong
H^{2-i} (X_\et, \ZZ^c (n))^D,
\end{equation}
where
\begin{equation}
\label{eqn:definition-of-Z(n)}
\ZZ (n) \dfn \QQ/\ZZ (n) [-1] \dfn
\bigoplus_p \varinjlim_r j_{p!} \mu_{p^r}^{\otimes n} [-1].
\end{equation}
Here $\widehat{H}^i_c (X_\et, \ZZ (n))$ is the modified cohomology with compact
support, for which we refer to \cite[\S 2]{Geisser-Schmidt-2018} and
\cite[Appendix~B]{Beshenov-Weil-etale-1}. In particular,
\[
\widehat{H}^i_c (X_\et, \ZZ (n)) = H^i_c (X_\et, \ZZ (n))
\quad
\text{if }X (\RR) = \emptyset.
\]
We recall that $(-)^D$ denotes the group $\Hom (-, \QQ/\ZZ)$. We note that
\eqref{eqn:arithmetic-duality} is a powerful result, deduced in
\cite{Beshenov-Weil-etale-1} from the work of Geisser \cite{Geisser-2010}.
\begin{proof}[Proof of Proposition~\ref{prop:structure-of-motivic-cohomology}]
We use Lemma~\ref{lemma:devissage}. We will say that $\mathcal{P} (X)$ holds
if the motivic cohomology of $X$ has the structure
\eqref{eqn:structure-of-motivic-cohomology}.
\vspace{1em}
\textbf{Let us first consider the case of a finite field $X = \Spec \FF_q$}.
We have
\begin{equation}
\label{eqn:motivic-cohomology-finite-fields}
H^i (\Spec \FF_{q,\et}, \ZZ^c (n)) \cong
\begin{cases}
\ZZ/(q^{-n} - 1), & i = 1, \\
0, & i \ne 1.
\end{cases}
\end{equation}
---see, for example, \cite[Example~4.2]{Geisser-2017}. This is related to
Quillen's calculation of the $K$-theory of finite fields \cite{Quillen-1972}.
In general, if $X$ is a zero-dimensional arithmetic scheme, then the motivic
cohomology of $X$ and $X_\red$ coincide, so we can assume that $X$ is
reduced. Then $X$ is a finite disjoint union of $X_i = \Spec \FF_{q_i}$, and
\begin{equation}
H^i (X, \ZZ^c (n)) = \begin{cases}
\text{finite}, & i = 1, \\
0, & i \ne 1.
\end{cases}
\end{equation}
In particular, $\mathcal{P} (X)$ holds if $\dim X = 0$.
\vspace{1em}
\textbf{Now we check the compatibility properties for $\mathcal{P}$}.
If $X = \coprod_i X_i$ is a finite disjoint union, then
$H^i (X_\et, \ZZ^c (n)) \cong \bigoplus_i H^i (X_{i,\et}, \ZZ^c (n))$,
hence the property $\mathcal{P}$ is compatible with disjoint unions.
Similarly, if $U \subset X$ is a dense open subscheme, and $Z = X\setminus U$
its closed complement, then $\dim Z = 0$. We consider the long exact sequence
\eqref{eqn:localization-les}. Since the cohomology of $Z$ is concentrated in
$i = 1$, we have $H^i (X_\et, \ZZ^c (n)) \cong H^i (U_\et, \ZZ^c (n))$ for
$i \ne 0,1$, and what is left is an exact sequence
\begin{multline*}
0 \to H^0 (X_\et, \ZZ^c (n)) \to
H^0 (U_\et, \ZZ^c (n)) \to \\
H^1 (Z_\et, \ZZ^c (n)) \to
H^1 (X_\et, \ZZ^c (n)) \to
H^1 (U_\et, \ZZ^c (n)) \to 0
\end{multline*}
Moreover, $d_n (X) = d_n (U)$. These considerations show that
$\mathcal{P} (X)$ and $\mathcal{P} (U)$ are equivalent, and therefore
Lemma~\ref{lemma:devissage} works, and it remains to establish
$\mathcal{P} (X)$ for a curve $X/\FF_q$ or $X = \Spec \mathcal{O}_F$.
\vspace{1em}
\textbf{Suppose that $X/\FF_q$ is a smooth curve}. The groups
$H^i (X_\et, \ZZ^c (n))$ are finitely generated by
\cite[Proposition~4.3]{Geisser-2017}, so that the duality
\eqref{eqn:arithmetic-duality} holds. The $\QQ/\ZZ$-dual groups
\[ H^i_c (X_\et, \ZZ(n)) =
\bigoplus_\ell H^{i-1}_c (X_\et, \QQ_\ell/\ZZ_\ell (n)) \]
are finite by \cite[Theorem~3]{Kahn-2003}, and concentrated in $i = 1,2,3$ for
dimension reasons. It follows that $H^i (X_\et, \ZZ^c (n))$ in this case are
finite groups concentrated in $i = -1,0,1$, and the property $\mathcal{P} (X)$
holds.
\vspace{1em}
\textbf{It remains to consider the case of $X = \Spec \mathcal{O}_F$}.
In this case, the finite generation of $H^i (X_\et, \ZZ^c (n))$ is also known;
see, for example, \cite[Proposition~4.14]{Geisser-2017}. Therefore, the
duality \eqref{eqn:arithmetic-duality} holds. We have
$\widehat{H}^i_c (\Spec \mathcal{O}_F [1/p], \mu_{p^r}^{\otimes n}) = 0$ for
$i \ge 3$ by Artin--Verdier duality \cite[Chapter~II,
Corollary~3.3]{Milne-ADT}, or by \cite[p.\,268]{Soule-1979}. Therefore, it
follows that $\widehat{H}^i_c (X_\et, \ZZ (n)) = 0$ for $i \ge 4$, and hence
by duality \eqref{eqn:arithmetic-duality}, $H^i (X_\et, \ZZ^c (n)) = 0$ for
$i \le -2$.
Now we identify the finite $2$-torsion in $H^i (X_\et, \ZZ^c (n))$ for
$i \ge 2$. By \cite[Lemma~6.14]{Flach-Morin-2018}, there is an exact
sequence
\begin{multline}
\label{eqn:les-Hc-vs-H-hat-c}
\cdots \to H^{i-1}_c (X_\et, \ZZ (n)) \to
\widehat{H}^{i-1} (G_\RR, X(\CC), \ZZ (n)) \to \\
\widehat{H}^i_c (X_\et, \ZZ (n)) \to
H^i_c (X_\et, \ZZ (n)) \to \cdots
\end{multline}
For $i \le 0$ we have $H^i_c (X_\et, \ZZ (n)) = 0$, and therefore
\[ \widehat{H}^i_c (X_\et, \ZZ (n)) \cong
\widehat{H}^{i-1}_c (G_\RR, X(\CC), \ZZ (n)) \cong
\begin{cases}
(\ZZ/2\ZZ)^{\oplus r_1}, & i\not\equiv n ~ (2), \\
0, & i\equiv n ~ (2).
\end{cases} \]
By duality, for $i \ge 2$ we have
\[ H^i (X_\et, \ZZ^c (n)) \cong
\begin{cases}
(\ZZ/2\ZZ)^{\oplus r_1}, & i\not\equiv n ~ (2), \\
0, & i\equiv n ~ (2).
\end{cases} \]
Now we determine the ranks of $H^i (X_\et, \ZZ^c (n))$ for $i = -1,0,1$.
By \cite[Proposition~2.1]{Kolster-Sands-2008} the Chern character for
$i = -1,0$
$$K_{-2n - i} (X) \to H^i (X_\et, \ZZ^c(n))$$
has a finite $2$-torsion kernel and cokernel. Originally, the target
group is defined over $X_\Zar$, and we identify it with the
cohomology on $X_\et$ using the Beilinson--Lichtenbaum conjecture
$H^j (X_\Zar, \ZZ(m)) \cong H^j (X_\et, \ZZ(m))$ for $j \le m+1$,
which is now a theorem thanks to the Bloch--Kato conjecture and
\cite[Theorem~1.2]{Geisser-2004-Dedekind}; we further use the
isomorphism \eqref{eqn:Zc(n)-vs-Z(d-n)} to identify our motivic
cohomology with the one used in \cite{Kolster-Sands-2008}:
\[ H^{2+i} (X_\Zar, \ZZ (1-n)) \stackrel{i \le -n}{\cong}
H^{2+i} (X_\et, \ZZ (1-n)) \cong
H^i (X_\et, \ZZ^c(n)). \]
For $i = -1,0$ we have therefore
$$\rk_\ZZ H^i (X_\et, \ZZ^c(n)) = \rk_\ZZ K_{-2n - i} (X).$$
Together with Borel's calculation of the ranks of $K_m (\mathcal{O}_F)$ in \cite{Borel-1974}, this implies that
$H^0 (X_\et, \ZZ^c (n))$ is a finite group, while
\[ \rk_\ZZ H^{-1} (X_\et, \ZZ^c(n)) = d_n =
\begin{cases}
r_1 + r_2, & n \text{ even}, \\
r_2, & n \text{ odd}.
\end{cases} \]
Finally, by \cite[p.\,179]{Kolster-Sands-2008} and
\eqref{eqn:Zc(n)-vs-Z(d-n)}, we have
\[ H^1 (X_\et, \ZZ^c(n)) \cong
\begin{cases}
(\ZZ/2\ZZ)^{\oplus r_1}, & n\text{ even}, \\
0, & n\text{ odd}.
\end{cases} \]
This concludes the proof.
\end{proof}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Regulator for one-dimensional $X$}
\label{sec:regulators}
Now we explain what is meant by the regulator in our situation.
\begin{definition}
We let the \textbf{regulator morphism} be the composition
\begin{multline*}
\varrho_{X,n}\colon
H^{-1} (X_\et, \ZZ^c (n)) \xrightarrow{x \mapsto x\otimes 1}
H^{-1} (X_\et, \ZZ^c (n)) \otimes \RR \\
\xrightarrow{Reg_{X,n}} H^0_\BM (G_\RR, X(\CC), \RR(n)),
\end{multline*}
where the map $Reg_{X,n}$ is defined in \cite[\S 2]{Beshenov-Weil-etale-2}.
\end{definition}
The target is the Borel--Moore cohomology defined by
\[ H^0_\BM (G_\RR, X(\CC), \RR(n)) \dfn
\Hom (H^0_c (G_\RR, X(\CC), \RR(n)), \RR). \]
In general, the regulator takes values in Deligne--Beilinson cohomology, but the
target simplifies in the case of $n < 0$, as explained in
\cite[\S 2]{Beshenov-Weil-etale-2}.
\begin{remark}