-
Notifications
You must be signed in to change notification settings - Fork 0
/
beshenov-weil-etale-zeta-values.tex
2586 lines (2279 loc) · 122 KB
/
beshenov-weil-etale-zeta-values.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt,a4paper,oneside]{article}
\usepackage[titletoc]{appendix}
\usepackage{amsmath,amssymb}
\usepackage{extarrows}
\usepackage{pdflscape}
\usepackage{tocloft}
\renewcommand{\cftsecleader}{\cftdotfill{\cftdotsep}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\DeclareMathOperator{\cd}{cd}
\DeclareMathOperator{\Cone}{Cone}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\fchar}{char}
\DeclareMathOperator{\Fil}{Fil}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Isom}{Isom}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\rk}{rk}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Tot}{Tot}
\DeclareMathOperator{\vol}{vol}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\CC}{\mathbb{C}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\PP}{\mathbb{P}}
\DeclareMathOperator{\Gr}{Gr}
\newcommand{\Parf}{\mathcal{P}\!\text{\it arf}}
% force \nolimits on \det:
\renewcommand{\det}{\operatorname{det}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\emptyset}{\varnothing}
\newcommand{\ar}{\text{\it ar}}
\newcommand{\BM}{\text{\it BM}}
\newcommand{\codiv}{\text{\it codiv}}
\newcommand{\DB}{{\mathcal{D}\text{-}\mathcal{B}}}
\renewcommand{\div}{\text{\it div}}
\newcommand{\dR}{\text{\it dR}}
\newcommand{\et}{\text{\it \'{e}t}}
\newcommand{\fg}{\text{\it fg}}
\newcommand{\is}{\text{\it is}}
\newcommand{\red}{\text{\it red}}
\newcommand{\tors}{\text{\it tors}}
\newcommand{\Wc}{\text{\it W,c}}
\newcommand{\Zar}{\text{\it Zar}}
\newcommand{\dfn}{\mathrel{\mathop:}=}
\newcommand{\rdfn}{=\mathrel{\mathop:}}
\newcommand{\iHom}{\underline{\Hom}}
\newcommand{\RHom}{R\!\Hom}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{tikz-cd}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}
\usetikzlibrary{babel}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{patterns}
\newcommand{\tikzpb}{\ar[phantom,pos=0.2]{dr}{\text{\large$\lrcorner$}}}
\newcommand{\tikzpbur}{\ar[phantom,pos=0.2]{dl}{\text{\large$\llcorner$}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{hyperref}
\hypersetup{
colorlinks,
linkcolor={red!60!black},
citecolor={blue!60!black},
urlcolor={blue!80!black}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{amsthm}
\newtheoremstyle{myplain}
{\topsep} % ABOVESPACE
{\topsep} % BELOWSPACE
{\itshape} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\scshape} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{myplain}
\newtheorem{maintheorem}{Theorem}
\renewcommand*{\themaintheorem}{\Roman{maintheorem}}
\newtheorem*{maintheorem*}{Main theorem}
\newtheorem*{thetheorem*}{Theorem}
\newtheorem*{proposition*}{Proposition}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheoremstyle{mydefinition}
{\topsep} % ABOVESPACE
{\topsep} % BELOWSPACE
{} % BODYFONT
{0pt} % INDENT (empty value is the same as 0pt)
{\scshape} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC
\theoremstyle{mydefinition}
\newtheorem*{conjecture*}{Conjecture}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Weil-\'{e}tale cohomology and zeta-values of arithmetic schemes at negative integers}
\author{Alexey Beshenov}
\date{}
\AtEndDocument{%
\par
\medskip
\begin{tabular}{@{}l@{}}%
\\
Alexey Beshenov \\
E-mail: \texttt{cadadr@gmail.com} \\
URL: \url{https://cadadr.org/}
\end{tabular}}
\numberwithin{equation}{section}
\begin{document}
\maketitle
\begin{abstract}
Following the ideas of Flach and Morin \cite{Flach-Morin-2018}, we state a
conjecture in terms of Weil-\'{e}tale cohomology for the vanishing order and
special value of the zeta function $\zeta (X,s)$ at $s = n < 0$, where $X$ is
a separated scheme of finite type over $\Spec \ZZ$. We prove that the
conjecture is compatible with closed-open decompositions of schemes and with
affine bundles, and consequently, that it holds for cellular schemes over
certain one-dimensional bases.
This is a continuation of \cite{Beshenov-Weil-etale-1}, which gives a
construction of Weil-\'{e}tale cohomology for $n<0$ under the mentioned
assumptions on $X$.
\end{abstract}
% \tableofcontents
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
Let $X$ be an \textbf{arithmetic scheme}, by which we mean in this paper that it
is a separated scheme of finite type $X \to \Spec \ZZ$. Then the corresponding
\textbf{zeta function} is defined by
\begin{equation}
\label{eqn:Euler-product-for-zeta}
\zeta (X,s) = \prod_{\substack{x \in X \\ \text{closed pt.}}}
\frac{1}{1 - N (x)^{-s}}.
\end{equation}
Here, for a closed point $x \in X$, the norm
$$N (x) = |\kappa (x)| = |\mathcal{O}_{X,x}/\mathfrak{m}_{X,x}|$$
is the size of the corresponding residue field. The product converges for
$\Re s > \dim X$, and conjecturally admits a meromorphic continuation to the
whole complex plane. Basic facts and conjectures about zeta functions of schemes
can be found in \cite{Serre-1965}.
Of particular interest are the so-called special values of $\zeta (X,s)$ at
integers $s = n \in \ZZ$, also known as the \textbf{zeta-values} of $X$.
To define these, we assume that $\zeta (X,s)$ admits a meromorphic continuation
around $s = n$. We denote by
$$d_n = \ord_{s=n} \zeta (X,s)$$
the \textbf{vanishing order} of $\zeta (X,s)$ at $s = n$. That is, $d_n > 0$
(resp. $d_n < 0$) if $\zeta (X,s)$ has a zero (resp. pole) of order $|d_n|$ at
$s = n$.
The \textbf{special value} of $\zeta (X,s)$ at $s = n$ is defined as the leading
nonzero coefficient of the Taylor expansion:
$$\zeta^* (X,n) = \lim_{s \to n} (s - n)^{-d_n}\,\zeta (X,s).$$
Early on, Lichtenbaum conjectured that both numbers $\ord_{s = n} \zeta (X,s)$
and $\zeta^* (X,n)$ should have a cohomological interpretation related to the
\'{e}tale motivic cohomology of $X$ (see e.g. \cite{Lichtenbaum-1984} for
varieties over finite fields).
This is made precise in Lichtenbaum's Weil-\'{e}tale program. It suggests the
existence of \textbf{Weil-\'{e}tale cohomology}, which is a suitable
modification of motivic cohomology that encodes the information about the
vanishing order and the special value of $\zeta (X,s)$ at $s = n$.
For Lichtenbaum's recent work on this topic, we refer the reader to
\cite{Lichtenbaum-2005,Lichtenbaum-2009-Euler-char,Lichtenbaum-2009-number-rings,Lichtenbaum-2021}.
The case of varieties over finite fields $X/\FF_q$ is now well understood thanks
to the work of Geisser
\cite{Geisser-2004,Geisser-2006,Geisser-2010-arithmetic-homology}.
Flach and Morin considered the case of proper, regular arithmetic schemes
$X$. In \cite{Flach-Morin-2012} they have studied the corresponding
Weil-\'{e}tale topos. Later, in \cite{Morin-2014} Morin gave an explicit
construction of Weil-\'{e}tale cohomology groups $H^i_\Wc (X, \ZZ)$ for a proper
and regular arithmetic scheme $X$. This construction was further generalized by
Flach and Morin in \cite{Flach-Morin-2018} to groups $H^i_\Wc (X, \ZZ(n))$ with
weights $n \in \ZZ$, again for a proper and regular $X$.
Motivated by the work of Flach and Morin, the author constructed in
\cite{Beshenov-Weil-etale-1} Weil-\'{e}tale cohomology groups
$H^i_\Wc (X, \ZZ (n))$ for any arithmetic scheme $X$ (removing the assumption
that $X$ is proper or regular) and strictly negative weights $n < 0$.
The construction is based on the following assumption.
\begin{conjecture*}
$\mathbf{L}^c (X_\et,n)$: given an arithmetic scheme $X$ and $n < 0$, the
cohomology groups $H^i (X_\et, \ZZ^c (n))$ are finitely generated for all
$i \in \ZZ$.
\end{conjecture*}
For the known cases, see \cite[\S 8]{Beshenov-Weil-etale-1}. Under this
conjecture, we constructed in \cite[\S 7]{Beshenov-Weil-etale-1} perfect
complexes of abelian groups $R\Gamma_\Wc (X, \ZZ(n))$ and the corresponding
cohomology groups
$$H^i_\Wc (X, \ZZ(n)) \dfn H^i (R\Gamma_\Wc (X, \ZZ(n))).$$
This text is a continuation of \cite{Beshenov-Weil-etale-1} and investigates the
conjectural relation of our Weil-\'{e}tale cohomology to the special value of
$\zeta (X,s)$ at $s = n < 0$. Specifically, we make the following conjectures.
\begin{enumerate}
\item[1)] \textbf{Conjecture}~$\mathbf{VO} (X,n)$
(see \S\ref{sec:vanishing-order-conjecture}):
\emph{the vanishing order is given by the weighted alternating sum of ranks}
\[ \ord_{s=n} \zeta (X,s) =
\sum_{i\in \ZZ} (-1)^i \cdot i \cdot \rk_\ZZ H_\Wc^i (X, \ZZ(n)). \]
\item[2)] A consequence of \textbf{Conjecture}~$\mathbf{B} (X,n)$
(see \S\ref{sec:regulator} and Lemma~\ref{lemma:smile-theta}):
\emph{after tensoring the cohomology groups $H_\Wc^i (X, \ZZ (n))$ with $\RR$,
we obtain a long exact sequence of finite dimensional real vector spaces}
\[ \cdots \to H_\Wc^{i-1} (X, \RR (n)) \xrightarrow{\smile\theta}
H_\Wc^i (X, \RR (n)) \xrightarrow{\smile\theta}
H_\Wc^{i+1} (X, \RR (n)) \to \cdots \]
It follows that there is a canonical isomorphism
\[ \lambda\colon \RR \xrightarrow{\cong}
(\det_\ZZ R\Gamma_\Wc (X, \ZZ (n))) \otimes \RR. \]
Here $\det_\ZZ R\Gamma_\Wc (X, \ZZ (n))$ is the determinant of the
perfect complex of abelian groups $R\Gamma_\Wc (X, \ZZ (n))$, in the sense of
Knudsen and Mumford \cite{Knudsen-Mumford-1976}. In particular,
$\det_\ZZ R\Gamma_\Wc (X, \ZZ (n))$ is a free $\ZZ$-module of rank
$1$. For the convenience of the reader, we give a brief overview of
determinants in Appendix~\ref{app:determinants}.
\item[3)] \textbf{Conjecture}~$\mathbf{C} (X,n)$
(see \S\ref{sec:special-value-conjecture}):
\emph{the special value is determined up to sign by}
\[ \lambda (\zeta^* (X, n)^{-1}) \cdot \ZZ =
\det_\ZZ R\Gamma_\Wc (X, \ZZ (n)). \]
\end{enumerate}
If $X$ is proper and regular, then our construction of
$R\Gamma_\Wc (X, \ZZ (n))$ and the above conjectures agree with those of Flach
and Morin from \cite{Flach-Morin-2018}. Apart from removing the assumption that
$X$ is proper and regular, a novelty of this work is that we prove the
compatibility of the conjectures with operations on schemes, in particular with
closed-open decompositions $Z \not\hookrightarrow X \hookleftarrow U$, where
$Z \subset X$ is a closed subscheme and $U = X\setminus Z$ is the open
complement, and with affine bundles $\AA_X^r = \AA_\ZZ^r \times X$ (see
Proposition~\ref{prop:compatibility-of-VO(X,n)} and
Theorem~\ref{thm:compatibility-of-C(X,n)}). This gives a machinery for starting
from the cases of schemes for which the conjectures are known and constructing
new schemes for which the conjectures also hold. As an application, we prove in
\S\ref{sec:unconditional-results} the following result.
\begin{maintheorem*}
Let $B$ be a one-dimensional arithmetic scheme, such that each of the generic
points $\eta \in B$ satisfies one of the following properties:
\begin{enumerate}
\item[a)] $\fchar \kappa (\eta) = p > 0$;
\item[b)] $\fchar \kappa (\eta) = 0$, and $\kappa (\eta)/\QQ$ is an abelian
number field.
\end{enumerate}
If $X$ is a $B$-cellular arithmetic scheme with smooth quasi-projective fiber
$X_{\red,\CC}$, then Conjectures~$\mathbf{VO} (X,n)$ and
$\mathbf{C} (X,n)$ hold unconditionally for any $n < 0$.
\end{maintheorem*}
In fact, this result is established for a larger class of arithmetic schemes
$\mathcal{C} (\ZZ)$; we refer to \S\ref{sec:unconditional-results} for more
details.
\subsection*{Outline of the paper}
In \S\ref{sec:regulator} we define the regulator morphism, based on the
construction of Kerr, Lewis, and M\"{u}ller-Stach
\cite{Kerr-Lewis-Muller-Stach-2006}, and state the associated
Conjecture~$\mathbf{B} (X,n)$.
Then \S\ref{sec:vanishing-order-conjecture} is devoted to
Conjecture~$\mathbf{VO} (X,n)$ about the vanishing order. We also explain why it
is consistent with a conjecture of Soul\'{e}, and with the vanishing order
arising from the expected functional equation.
In \S\ref{sec:special-value-conjecture} we state Conjecture~$\mathbf{C} (X,n)$
about the special value.
We explain in \S\ref{sec:finite-fields} that if $X$ is a variety over a finite
field, then Conjecture~$\mathbf{C} (X,n)$ is consistent with the conjectures
considered by Geisser in
\cite{Geisser-2004,Geisser-2006,Geisser-2010-arithmetic-homology}, and it
follows from Conjecture~$\mathbf{L}^c (X_\et,n)$.
Then we prove in \S\ref{sec:compatibility-with-operations} that Conjectures
$\mathbf{VO} (X,n)$ and $\mathbf{C} (X,n)$ are compatible with basic operations
on schemes: disjoint unions, closed-open decompositions, and affine
bundles. Using these results, we conclude in \S\ref{sec:unconditional-results}
with a class of schemes for which the conjectures hold unconditionally.
For the convenience of the reader, Appendix~\ref{app:determinants} gives a brief
overview of basic definitions and facts related to the determinants of
complexes.
\subsection*{Notation}
In this paper, $X$ always denotes an \textbf{arithmetic scheme} (separated, of
finite type over $\Spec \ZZ$), and $n$ is always a strictly negative integer.
We denote by
\[
R\Gamma_\fg (X, \ZZ (n))
\quad\text{and}\quad
R\Gamma_\Wc (X, \ZZ (n))
\]
the complexes of abelian groups constructed in \cite{Beshenov-Weil-etale-1}
under Conjecture~$\mathbf{L}^c (X_\et,n)$. We set
\begin{align*}
H^i_\fg (X, \ZZ (n)) & \dfn H^i (R\Gamma_\fg (X, \ZZ (n))), \\
H^i_\Wc (X, \ZZ (n)) & \dfn H^i (R\Gamma_\Wc (X, \ZZ (n))).
\end{align*}
By \cite[Proposition 5.5 and 7.12]{Beshenov-Weil-etale-1}, these
cohomology groups are finitely generated, assuming
Conjecture~$\mathbf{L}^c (X_\et,n)$; moreover, the groups $H^i_\Wc (X, \ZZ(n))$
are bounded, and $H^i_\fg (X, \ZZ (n))$ are bounded from below and finite
$2$-torsion for $i \gg 0$.
Briefly, the construction fits in the following diagram of distinguished
triangles in the derived category $\mathbf{D} (\ZZ)$:
\[ \begin{tikzcd}[column sep=1.5em]
&[-3em] \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2]) \ar{d}{\alpha_{X,n}} \ar{r} &[-2.5em] 0 \ar{d} \\
& R\Gamma_c (X_\et, \ZZ(n)) \ar{d}\ar{r}{u_\infty^*} & R\Gamma_c (G_\RR, X (\CC), \ZZ(n))\ar{d}{id} \\
R\Gamma_\Wc (X, \ZZ (n)) \ar{r} & R\Gamma_\fg (X, \ZZ(n)) \ar[dashed]{r}{i_\infty^*}\ar{d} & R\Gamma_c (G_\RR, X (\CC), \ZZ(n)) \ar{r} \ar{d} & {[1]} \\
& \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-1]) \ar{r} & 0
\end{tikzcd} \]
For more details, see \cite{Beshenov-Weil-etale-1}.
For real coefficients, we set
\begin{align*}
R\Gamma_\fg (X, \RR (n)) & \dfn R\Gamma_\fg (X, \ZZ (n)) \otimes \RR, \\
R\Gamma_\Wc (X, \RR (n)) & \dfn R\Gamma_\Wc (X, \ZZ (n)) \otimes \RR.
\end{align*}
Accordingly,
\begin{align*}
H^i_\fg (X, \RR (n)) & \dfn H^i (R\Gamma_\fg (X, \RR (n))) = H^i_\fg (X, \ZZ (n)) \otimes \RR, \\
H^i_\Wc (X, \RR (n)) & \dfn H^i (R\Gamma_\Wc (X, \RR (n))) = H^i_\Wc (X, \ZZ (n)) \otimes \RR.
\end{align*}
By $X (\CC)$ we denote the space of complex points of $X$ with the usual
analytic topology. It carries a natural action of $G_\RR = \Gal (\CC/\RR)$ via
the complex conjugation. For a subring $A \subseteq \RR$ we denote by $A (n)$
the $G_\RR$-module $(2\pi i)^n\,A$, and also the corresponding constant
$G_\RR$-equivariant sheaf on $X (\CC)$.
We denote by $R\Gamma_c (X (\CC), A (n))$ the cohomology with compact support
with $A (n)$-coefficients, and its $G_\RR$-equivariant version is defined by
$$R\Gamma_c (G_\RR, X (\CC), A (n)) \dfn R\Gamma (G_\RR, R\Gamma_c (X (\CC), A (n)))$$
For real coefficients, we have
$$H_c^i (G_\RR, X (\CC), \RR (n)) = H^i_c (X (\CC), \RR (n))^{G_\RR},$$
where the $G_\RR$-action on $H^i_c (X (\CC), \RR (n))$ naturally comes from the
corresponding action on $X (\CC)$ and $\RR (n)$.
\textbf{Borel--Moore homology} is defined as the dual to cohomology with compact
support. We are interested in the real coefficients:
\begin{align*}
R\Gamma_\BM (X (\CC), \RR (n)) & \dfn
\RHom (R\Gamma_c (X (\CC), \RR (n)), \RR), \\
R\Gamma_\BM (G_\RR, X (\CC), \RR (n)) & \dfn
\RHom (R\Gamma_c (G_\RR, X (\CC), \RR (n)), \RR).
\end{align*}
\subsection*{Acknowledgments}
Parts of this work are based on my doctoral thesis, which I wrote under the
supervision of Baptiste Morin (Universit\'{e} de Bordeaux) and Bas Edixhoven
(Universiteit Leiden). I am very grateful to them for their support in working
on this project. I am also indebted to Matthias Flach, as the ideas for this
work came from \cite{Flach-Morin-2018}. I thank Stephen Lichtenbaum and Niranjan
Ramachandran who kindly agreed to act as reviewers for my thesis and provided me
with many useful comments and suggestions. Finally, I thank Jos\'{e} Jaime
Hern\'{a}ndez Castillo, Diosel L\'{o}pez Cruz, and Maxim Mornev for several
fruitful discussions.
This paper was edited while I visited the Center for Research in Mathematics
(CIMAT), Guanajuato. I personally thank Pedro Luis del \'{A}ngel and
Xavier G\'{o}mez Mont for their hospitality.
Last but not least, I am indebted to the anonymous referee for their comments
on an earlier draft of this text.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Regulator morphism and Conjecture~$\mathbf{B} (X,n)$}
\label{sec:regulator}
In order to formulate the special value conjecture, we need a regulator morphism
from motivic cohomology to Deligne(--Beilinson) (co)homology. Such regulators
were originally introduced by Bloch in \cite{Bloch-1986-Lefschetz}, and here we
use the construction of Kerr, Lewis, and M\"{u}ller-Stach
\cite{Kerr-Lewis-Muller-Stach-2006}, which works at the level of complexes.
We will simply call it ``the KLM regulator.'' It works under the assumption that
$X_{\red,\CC}$ is a smooth quasi-projective variety.
For simplicity, in this section we assume that $X$ is reduced (motivic
cohomology does not distinguish between $X$ and $X_\red$), and that $X_\CC$ is
connected of dimension $d_\CC$ (otherwise, the arguments below can be applied to
each connected component). We fix a compactification by a normal crossing
divisor
\[ \begin{tikzcd}
X_\CC \ar[right hook->]{r}{j} & \overline{X}_\CC & D \ar[left hook->]{l}
\end{tikzcd} \]
The KLM regulator has the form of a morphism in the derived category
\begin{equation}
\label{eqn:KLM-morphism-1}
z^p (X_\CC, -\bullet) \otimes \QQ \to
{}' C_\mathcal{D}^{2p - 2d_\CC + \bullet} (\overline{X}_\CC, D, \QQ (p-d_\CC)).
\end{equation}
Here $z^p (X_\CC, -\bullet)$ denotes the Bloch's cycle complex
\cite{Bloch-1986}. To define it, consider the algebraic simplex
$\Delta_\CC^i = \Spec \CC [t_0,\ldots,t_i]/(1 - \sum_j t_j)$.
Then, $z^p (X_\CC, i)$ is freely generated by algebraic cycles
$Z \subset X_\CC \times_{\Spec \CC} \Delta_\CC^i$ of codimension $p$ which
intersect the faces properly. It is more convenient for us to work with
$$z_{d_\CC - p} (X_\CC, i) = z^p (X_\CC, i),$$
generated by cycles $Z \subset X_\CC \times_{\Spec \CC} \Delta_\CC^i$ of
dimension $p+i$.
The complex ${}' C_\mathcal{D}^{\bullet} (\overline{X}_\CC, D, \QQ (k))$ on the
right-hand side of \eqref{eqn:KLM-morphism-1} computes Deligne(--Beilinson)
homology, as defined by Jannsen \cite{Jannsen-1988}. If we take
$p = d_\CC + 1 - n$, tensor it with $\RR$ and shift it by $2n$, we obtain
\begin{equation}
\label{eqn:KLM-morphism-2}
z_{n-1} (X_\CC, -\bullet) \otimes \RR [2n] \to
{}' C_\mathcal{D}^{2 + \bullet} (\overline{X}_\CC, D, \RR (1-n)).
\end{equation}
\begin{remark}
Some comments are in order.
\begin{enumerate}
\item Originally, the KLM regulator is defined using a cubical version of
cycle complexes, but these are quasi-isomorphic to the usual simplicial
cycle complexes by \cite{Levine-1994}, so we make no distinction here.
For an explicit simplicial version of the KLM regulator, see
\cite{Kerr-Lewis-Lopatto-2018}.
\item The KLM regulator is defined as a true morphism of complexes (not just a
morphism in the derived category) on a subcomplex
$z^r_\RR (X_\CC, \bullet) \subset z^r (X_\CC, \bullet)$. This inclusion
becomes a quasi-isomorphism if we pass to rational coefficients. In the
original paper \cite{Kerr-Lewis-Muller-Stach-2006} this is stated without
tensoring with $\QQ$ , but the omission is acknowledged later in
\cite{Kerr-Lewis-2007}. For our purposes, it suffices to have a regulator
with coefficients in $\RR$.
\item The case of a smooth quasi-projective $X_\CC$, where one must consider a
compactification by a normal crossing divisor as above, is treated in
\cite[\S 5.9]{Kerr-Lewis-Muller-Stach-2006}.
\end{enumerate}
\end{remark}
Now we make a small digression to identify the right-hand side of
\eqref{eqn:KLM-morphism-2}. Under our assumption that $n < 0$, Deligne
homology is equivalent to Borel--Moore homology.
\begin{lemma}
For any $n < 0$ there is a quasi-isomorphism
\begin{multline*}
{}' C^\bullet_\mathcal{D} (\overline{X_\CC}, D, \RR (1-n)) \cong
R\Gamma_\BM (X (\CC), \RR (n)) [-1] \\
\dfn \RHom (R\Gamma_c (X (\CC), \RR (n)), \RR) [-1].
\end{multline*}
Moreover, it respects the natural actions of $G_\RR$ on both complexes.
\begin{proof}
From the proof of \cite[Theorem~1.15]{Jannsen-1988}, for any $k \in \ZZ$ we
have a quasi-isomorphism
\begin{equation}
\label{eqn:Jannsen-Theorem-1.15}
{}' C^\bullet_\mathcal{D} (\overline{X_\CC}, D, \RR (k)) \cong
R\Gamma (\overline{X} (\CC), \RR (k + d_\CC)_{\DB, (\overline{X}_\CC,X_\CC)}) [2d_\CC],
\end{equation}
where
\[ \RR (k + d_\CC)_{\DB, (\overline{X}_\CC,X_\CC)} =
\Cone \left(\begin{array}{c}
R j_* \RR (k + d_\CC) \\
\oplus \\
\Omega^{\geqslant k + d_\CC}_{\overline{X} (\CC)} (\log D)
\end{array}
\xrightarrow{\epsilon - \iota}
R j_* \Omega_{X (\CC)}^\bullet \right) [-1] \]
is the sheaf whose hypercohomology on $\overline{X} (\CC)$ gives
Deligne--Beilinson cohomology (see \cite{Esnault-Viehweg-1988} for
more details).
Here $\Omega^\bullet_{\overline{X} (\CC)}$ denotes the usual de Rham complex
of holomorphic differential forms, and
$\Omega^\bullet_{\overline{X} (\CC)} (\log D)$ is the complex of forms with
at most logarithmic poles along $D (\CC)$.
The latter complex is filtered by subcomplexes
$\Omega^{\geqslant \bullet}_{\overline{X} (\CC)} (\log D)$.
The morphism
$\epsilon\colon R j_* \RR (k) \to R j_* \Omega^\bullet_{X (\CC)}$ is induced
by the canonical morphism of sheaves $\RR (k) \to \mathcal{O}_{X (\CC)}$,
and $\iota$ is induced by the natural inclusion
$\Omega^\bullet_{\overline{X} (\CC)} (\log D) \xrightarrow{\cong} j_*
\Omega_{X (\CC)}^\bullet = R j_* \Omega_{X (\CC)}^\bullet$, which is a
quasi-isomorphism of filtered complexes.
We are interested in the case of $k > 0$ when the part
$\Omega^{\geqslant k + d_\CC}_{\overline{X} (\CC)} (\log D)$ vanishes, and
we obtain
\begin{align}
\notag \RR (k + d_\CC)_{\DB, (\overline{X}_\CC,X_\CC)} & \cong
R j_* \Cone \Bigl(\RR (k + d_\CC)
\xrightarrow{\epsilon}
\Omega_{X (\CC)}^\bullet \Bigr) [-1] \\
\notag & \cong R j_* \Bigl(\RR (k + d_\CC) \xrightarrow{\epsilon}
\Omega_{X (\CC)}^\bullet [-1] \Bigr) \\
\label{eqn:deligne-homology-1} & \cong R j_* \Bigl(\RR (k + d_\CC) \to \CC [-1] \Bigr) \\
\label{eqn:deligne-homology-2} & \cong R j_* \RR (k + d_\CC - 1) [-1]
\end{align}
Here \eqref{eqn:deligne-homology-1} comes from the Poincar\'{e} lemma
$\CC \cong \Omega_{X (\CC)}^\bullet$ and \eqref{eqn:deligne-homology-2}
from the short exact sequence of $G_\RR$-modules
$\RR (k + d_\CC) \rightarrowtail \CC \twoheadrightarrow \RR (k + d_\CC - 1)$.
Returning to \eqref{eqn:Jannsen-Theorem-1.15} for $k = 1-n$, we find that
\begin{align*}
{}' C^\bullet_\mathcal{D} (\overline{X_\CC}, D, \RR (1-n)) & \cong
R\Gamma (X (\CC), \RR (d_\CC - n)) [2d_\CC-1] \\
& \cong \RHom (R\Gamma_c (X (\CC), \RR (n)), \RR) [-1].
\end{align*}
Here the final isomorphism is Poincar\'{e} duality.
All the above is $G_\RR$-equivariant.
\end{proof}
\end{lemma}
Returning now to \eqref{eqn:KLM-morphism-2}, the previous lemma allows us to
reinterpret the KLM regulator as
\begin{equation}
\label{eqn:KLM-morphism-3}
z_{n-1} (X_\CC, -\bullet) \otimes \RR [2n] \to
R\Gamma_\BM (X (\CC), \RR (n)), \RR) [1].
\end{equation}
We have
\begin{multline}
\label{eqn:KLM-morphism-4}
z_{n-1} (X_\CC, -\bullet) \otimes \RR [2n] =
z_{n-1} (X_\CC, -\bullet) \otimes \RR [2n-2] [2] \\
= \Gamma (X_{\CC,\et}, \RR^c (n-1)) [2],
\end{multline}
where the complex of sheaves $\RR^c (p)$ is defined by
$U \rightsquigarrow z_p (U, -\bullet) \otimes \RR [2p]$.
By \'{e}tale cohomological descent \cite[Theorem~3.1]{Geisser-2010},
\begin{equation}
\label{eqn:KLM-morphism-5}
\Gamma (X_{\CC,\et}, \RR^c (n-1)) \cong R\Gamma (X_{\CC,\et}, \RR^c (n-1)).
\end{equation}
(We note that \cite[Theorem~3.1]{Geisser-2010} holds unconditionally, since the
Beilinson--Lichtenbaum conjecture follows from the Bloch--Kato conjecture, which
is now a theorem; see also \cite{Geisser-2004-Dedekind} where the consequences
of Bloch--Kato for motivic cohomology are deduced.)
Finally, the base change from $X$ to $X_\CC$ naturally maps cycles
$Z \subset X \times \Delta_\ZZ^i$ of dimension $n$ to cycles in
$X_\CC \times_{\Spec \CC} \Delta_\CC^i$ of dimension $n-1$, so that there is a
morphism
\begin{equation}
\label{eqn:KLM-morphism-6}
R\Gamma (X_\et, \RR^c (n)) \to R\Gamma (X_{\CC,\et}, \RR^c (n-1)) [2].
\end{equation}
\begin{remark}
Assuming that $X$ is flat and has pure Krull dimension $d$, we have
$\RR^c (n)^X = \RR (d-n)^X [2d]$, where $\RR (\bullet)$ is the usual cycle
complex defined by $z^n (\text{\textvisiblespace}, -\bullet) [-2n]$.
Similarly, $\RR^c (n)^{X_\CC} = \RR (d_\CC-n)^{X_\CC} [2d_\CC]$, with
$d_\CC = d - 1$. With this renumbering, the morphism
\eqref{eqn:KLM-morphism-6} becomes
$$R\Gamma (X_\et, \RR (d-n)) [2d] \to R\Gamma (X_{\CC,\et}, \RR (d-n)) [2d].$$
This probably looks more natural, but we make no additional assumptions about
$X$ and work exclusively with complexes $A^c (\bullet)$ defined in terms of
dimension of algebraic cycles, rather than $A (\bullet)$ defined in terms of
codimension.
\end{remark}
\begin{definition}
Given an arithmetic scheme $X$ with smooth quasi-projective $X_\CC$ and
$n < 0$, consider the composition of morphisms
\begin{multline*}
R\Gamma (X_\et, \RR^c (n)) \xrightarrow{\text{\eqref{eqn:KLM-morphism-6}}}
R\Gamma (X_{\CC,\et}, \RR^c (n-1)) [2] \stackrel{\text{\eqref{eqn:KLM-morphism-5}}}{\cong}
\Gamma (X_{\CC,\et}, \RR^c (n-1)) [2] \\
\stackrel{\text{\eqref{eqn:KLM-morphism-4}}}{=}
z_{n-1} (X_\CC, -\bullet)_\RR [2n] \xrightarrow{\text{\eqref{eqn:KLM-morphism-3}}}
R\Gamma_\BM (X (\CC), \RR (n)), \RR) [1].
\end{multline*}
Moreover, we take the $G_\RR$-invariants, which gives us the
\textbf{(\'{e}tale) regulator}
\[ Reg_{X,n}\colon R\Gamma (X_\et, \RR^c (n)) \to
R\Gamma_\BM (G_\RR, X(\CC), \RR (n)) [1]. \]
\end{definition}
Now we state our conjecture about the regulator, which will play an important
role in everything that follows.
\begin{conjecture}
$\mathbf{B} (X,n)$: given an arithmetic scheme $X$ with smooth
quasi-projective $X_\CC$ and $n < 0$, the regulator morphism $Reg_{X,n}$
induces a quasi-isomorphism of complexes of real vector spaces
\[ Reg_{X,n}^\vee\colon R\Gamma_c (G_\RR, X (\CC), \RR (n)) [-1] \to
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR). \]
\end{conjecture}
\begin{remark}
If $X/\FF_q$ is a variety over a finite field, then $X (\CC) = \emptyset$,
so the regulator map is not interesting. Indeed, in our setting, its purpose
is to take care of the Archimedian places of $X$. In this case
$\mathbf{B} (X,n)$ implies that $H^i (X_\et, \ZZ^c (n))$ are torsion groups.
However, by \cite[Proposition~4.2]{Beshenov-Weil-etale-1},
Conjecture~$\mathbf{L}^c (X_\et, n)$ already implies that
$H^i (X_\et, \ZZ^c (n))$ are finite groups.
\end{remark}
\begin{remark}
\label{rmk:regulator-is-defined-for-XC-smooth-quasi-proj}
We reiterate that our construction of $Reg_{X,n}$ works for $X_{\red,\CC}$
smooth quasi-projective. In everything that follows, whenever the regulator
morphism or Conjecture~$\mathbf{B} (X,n)$ is brought, we tacitly assume this
restriction. This is rather unfortunate, since Weil-\'{e}tale cohomology was
constructed in \cite{Beshenov-Weil-etale-1} for any arithmetic scheme,
assuming only Conjecture~$\mathbf{L}^c (X_\et,n)$. Defining the regulator for
singular $X_{\red,\CC}$ is an interesting project for future work.
\end{remark}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Vanishing order Conjecture $\mathbf{VO} (X,n)$}
\label{sec:vanishing-order-conjecture}
Assuming that $\zeta (X,s)$ admits a meromorphic continuation around
$s = n < 0$, we make the following conjecture for the vanishing order at
$s = n$.
\begin{conjecture}
$\mathbf{VO} (X,n)$: one has
\[ \ord_{s=n} \zeta (X,s) =
\sum_{i \in \ZZ} (-1)^i \cdot i \cdot \rk_\ZZ H^i_\Wc (X, \ZZ (n)). \]
\end{conjecture}
We note that the right-hand side makes sense under
Conjecture~$\mathbf{L}^c (X_\et,n)$, which implies that $H^i_\Wc (X, \ZZ (n))$
are finitely generated groups, trivial for $|i| \gg 0$;
see \cite[Proposition~7.12]{Beshenov-Weil-etale-1}.
\begin{remark}
Conjecture~$\mathbf{VO} (X,n)$ is similar to
\cite[Conjecture~5.11]{Flach-Morin-2018}. If $X$ is proper and regular, then
$\mathbf{VO} (X,n)$ is the same as Flach and Morin's vanishing order
conjecture. Indeed, the latter is
\begin{equation}
\label{eqn:FM-vanishing-order}
\ord_{s = n} \zeta (X,s) =
\sum_{i\in \ZZ} (-1)^i \cdot i \cdot \dim_\RR H^i_{\ar,c} (X, \widetilde{\RR}(n)),
\end{equation}
where
\[ R\Gamma_{\ar,c} (X, \widetilde{\RR}(n)) \dfn
R\Gamma_c (X, \RR(n)) \oplus R\Gamma_c (X, \RR(n)) [-1]. \]
Moreover, \cite[Proposition 4.14]{Flach-Morin-2018}, gives a distinguished
triangle
\begin{multline*}
R\Gamma_\dR (X_\RR/\RR) / \Fil^n [-2] \to
R\Gamma_{\ar,c} (X, \widetilde{\RR}(n)) \to
R\Gamma_\Wc (X, \ZZ(n)) \otimes \RR \\
\to R\Gamma_\dR (X_\RR/\RR) / \Fil^n [-1]
\end{multline*}
So, in case of $n < 0$ we have
$R\Gamma_{\ar,c} (X, \widetilde{\RR}(n)) \cong
R\Gamma_\Wc (X, \ZZ(n)) \otimes \RR$ and
\eqref{eqn:FM-vanishing-order} is exactly Conjecture~$\mathbf{VO} (X,n)$.
\end{remark}
\begin{remark}
The alternating sum in Conjecture~$\mathbf{VO} (X,n)$ is the so-called
\textbf{secondary Euler characteristic}
\[ \chi' (R\Gamma_\Wc (X, \ZZ (n))) \dfn
\sum_{i \in \ZZ} (-1)^i \cdot i \cdot \rk_\ZZ H^i_\Wc (X, \ZZ (n)). \]
The calculations below show that the usual Euler characteristic of
$R\Gamma_\Wc (X, \ZZ (n))$ vanishes, assuming
Conjectures~$\mathbf{L}^c (X_\et,n)$ and $\mathbf{B} (X,n)$. See
\cite{Ramachandran-2016} for more details on the secondary Euler
characteristic and its occurrences in nature.
\end{remark}
Under the regulator conjecture, our vanishing order formula takes the form of
the usual Euler characteristic of equivariant cohomology
$R\Gamma_c (G_\RR, X(\CC), \RR (n))$ or motivic cohomology
$R\Gamma (X_\et, \ZZ^c (n)) [1]$.
\begin{proposition}
\label{prop:VO(X,n)-assuming-B(X,n)}
Assuming $\mathbf{L}^c (X_\et, n)$ and $\mathbf{B} (X,n)$,
Conjecture~$\mathbf{VO} (X,n)$ is equivalent to
\begin{align*}
\ord_{s=n} \zeta (X,s) & = \chi (R\Gamma_c (G_\RR, X(\CC), \RR (n))
= \sum_{i \in \ZZ} (-1)^i \dim_\RR H^i_c (X(\CC), \RR (n))^{G_\RR} \\
& = -\chi (R\Gamma (X_\et, \ZZ^c (n)))
= \sum_{i \in \ZZ} (-1)^{i+1} \rk_\ZZ H^i (X_\et, \ZZ^c (n)).
\end{align*}
Moreover, we have
$$\chi (R\Gamma_\Wc (X, \ZZ(n))) = 0.$$
\begin{proof}
Thanks to \cite[Proposition~7.13]{Beshenov-Weil-etale-1}, the Weil-\'{e}tale
complex tensored with $\RR$ splits as
\[ R\Gamma_\Wc (X,\RR (n)) \cong
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR) [-1] \oplus
R\Gamma_c (G_\RR, X (\CC), \RR (n)) [-1]. \]
Assuming Conjecture~$\mathbf{B} (X,n)$, we also have a quasi-isomorphism
\[ R\Gamma_c (G_\RR, X (\CC), \RR (n)) [-1] \cong
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR), \]
so that
\[ \dim_\RR H^i_\Wc (X,\RR(n)) =
\dim_\RR H^{i-1}_c (X (\CC), \RR (n))^{G_\RR} +
\dim_\RR H^{i-2}_c (X (\CC), \RR (n))^{G_\RR}. \]
Thus, we can rewrite the sum
\begin{align*}
\sum_{i \in \ZZ} (-1)^i \cdot i \cdot \rk_\ZZ H^i_\Wc (X, \ZZ (n)) & = \sum_{i \in \ZZ} (-1)^i \cdot i \cdot \dim_\RR H^i_\Wc (X, \RR (n)) \\
& = \sum_{i \in \ZZ} (-1)^i \cdot i \cdot
\dim_\RR H^{i-1}_c (X (\CC), \RR (n))^{G_\RR} \\
& \quad\quad + \sum_{i \in \ZZ} (-1)^i \cdot i \cdot \dim_\RR H^{i-2}_c (X (\CC), \RR (n))^{G_\RR} \\
& = -\sum_{i \in \ZZ} (-1)^i \, \dim_\RR H^{i-1}_c (X (\CC), \RR (n))^{G_\RR} \\
& = \chi (R\Gamma_c (G_\RR, X (\CC), \RR (n)).
\end{align*}
Similarly,
\begin{align*}
\sum_{i \in \ZZ} (-1)^i \cdot i \cdot \rk_\ZZ H^i_\Wc (X, \ZZ (n)) & = \chi (\RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR) [1]) \\
& = -\chi (R\Gamma (X_\et, \ZZ^c (n))).
\end{align*}
These considerations also show that the usual Euler characteristic of
$R\Gamma_\Wc (X, \ZZ(n))$ vanishes.
\end{proof}
\end{proposition}
\begin{remark}
Conjecture~$\mathbf{VO} (X,n)$ is related to a conjecture of Soul\'{e}
\cite[Conjecture~2.2]{Soule-1984-ICM}, which originally reads in terms of
$K'$-theory
\[ \ord_{s=n} \zeta (X,s) =
\sum_{i \in \ZZ} (-1)^{i+1} \, \dim_\QQ K'_i (X)_{(n)}. \]
As explained in \cite[Remark~43]{Kahn-2005}, this can be rewritten in
terms of Borel--Moore motivic homology as
$$\sum_{i \in \ZZ} (-1)^{i+1} \, \dim_\QQ H_i^{BM} (X, \QQ (n)).$$
In our setting, $H^i (X_\et, \ZZ^c (n))$ plays the role of Borel--Moore
homology, which explains the formula
\[ \ord_{s=n} \zeta (X,s) =
\sum_{i \in \ZZ} (-1)^{i+1} \rk_\ZZ H^i (X_\et, \ZZ^c (n)). \]
\end{remark}
\begin{remark}[{\cite[Proposition~5.13]{Flach-Morin-2018}}]
\label{rmk:archimedian-euler-factor}
As for the formula
\[ \ord_{s=n} \zeta (X,s) =
\sum_{i \in \ZZ} (-1)^i \dim_\RR H^i_c (X(\CC), \RR (n))^{G_\RR}, \]
it essentially means that the vanishing order at $s = n < 0$ comes from the
Archimedian $\Gamma$-factor appearing in the (hypothetical) functional
equation, as explained in \cite[\S\S 3,4]{Serre-1970}
(see also \cite[\S 4]{Flach-Morin-2021}).
Indeed, under the assumption that $X_\CC$ is a smooth projective variety, we
consider the Hodge decomposition
\[ H^i (X (\CC), \CC) = \bigoplus_{p+q = i} H^{p,q}, \]
which carries an action of $G_\RR = \{ id, \sigma \}$ such that
$\sigma (H^{p,q}) = H^{q,p}$. We set $h^{p,q} = \dim_\CC H^{p,q}$.
For $p = i/2$ we consider the eigenspace decomposition
$H^{p,p} = H^{p,+} \oplus H^{p,-}$, where
\begin{align*}
H^{p,+} & = \{ x \in H^{p,p} \mid \sigma (x) = (-1)^p\,x \},\\
H^{p,-} & = \{ x \in H^{p,p} \mid \sigma (x) = (-1)^{p+1}\,x \},
\end{align*}
and set $h^{p,\pm} = \dim_\CC H^{p,\pm}$ accordingly.
The completed zeta function
$$\zeta (\overline{X}, s) = \zeta (X, s)\,\zeta (X_\infty, s)$$
is expected to satisfy a functional equation of the form
\[ A^{\frac{d-s}{2}}\,\zeta (\overline{X},d-s) =
A^{\frac{s}{2}}\,\zeta (\overline{X},s). \]
Here
\begin{gather*}
\zeta (X_\infty, s) = \prod_{i\in \ZZ} L_\infty (H^i (X),s)^{(-1)^i}, \\
L_\infty (H^i (X), s) =
\prod_{p = i/2} \Gamma_\RR (s - p)^{h^{p,+}}\,\Gamma_\RR (s-p+1)^{h^{p,-}} \,
\prod_{\substack{p + q = i \\ p < q}} \Gamma_\CC (s - p)^{h^{p,q}}, \\
\Gamma_\RR (s) = \pi^{-s/2} \, \Gamma (s/2), \quad
\Gamma_\CC (s) = (2\pi)^{-s} \, \Gamma (s).
\end{gather*}
Therefore, the expected vanishing order at $s = n < 0$ is
\begin{align*}
\ord_{s=n} \zeta (X,s) & = -\ord_{s=n} \zeta (X_\infty,s) \\
& = -\sum_{i\in \ZZ} (-1)^i \ord_{s=n} L_\infty (H^i (X), s) \\
& = \sum_{i\in \ZZ} (-1)^i \Bigl(\sum_{p = i/2} h^{p,(-1)^{n-p}} +
\sum_{\substack{p + q = i \\ p < q}} h^{p,q}\Bigr).
\end{align*}
The last equality follows from the fact that $\Gamma (s)$ has simple poles at
all $s = n \le 0$. We have
\begin{align*}
\dim_\RR H^i (X (\CC), \RR (n))^{G_\RR} & = \dim_\RR H^i (X (\CC), \RR)^{\sigma = (-1)^n} \\
& = \dim_\CC H^i (X (\CC), \CC)^{\sigma = (-1)^n} \\
& = \sum_{p = i/2} h^{p,(-1)^{n-p}} + \sum_{\substack{p + q = i \\ p < q}} h^{p,q}.
\end{align*}
Here the terms $h^{p,q}$ with $p < q$ come from $\sigma (H^{p,q}) = H^{q,p}$,
while $h^{p,(-1)^{n-p}}$ come from the action on $H^{p,p}$.
We see that our conjectural formula recovers the expected vanishing order.
\end{remark}
Let us look at some particular examples when the meromorphic continuation for
$\zeta (X,s)$ is known.
\begin{example}
\label{example:VO(X,n)-for-number-rings}
Suppose that $X = \Spec \mathcal{O}_F$ is the spectrum of the ring of integers
of a number field $F/\QQ$. Let $r_1$ be the number of real embeddings
$F \hookrightarrow \RR$ and $r_2$ be the number of conjugate pairs of complex
embeddings $F \hookrightarrow \CC$. The space $X (\CC)$ with the action of
complex conjugation can be visualized as follows:
\[ \begin{tikzpicture}
\matrix(m)[matrix of math nodes, row sep=1em, column sep=1em,
text height=1ex, text depth=0.2ex]{
~ & ~ & ~ & ~ & ~ & \bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \cdots & \bullet \\
~ & ~ & ~ & ~ & ~ & \bullet & \bullet & \cdots & \bullet \\};
\draw[->] (m-2-1) edge[loop above,min distance=10mm] (m-2-1);
\draw[->] (m-2-2) edge[loop above,min distance=10mm] (m-2-2);
\draw[->] (m-2-4) edge[loop above,min distance=10mm] (m-2-4);
\draw[->] (m-1-6) edge[bend left] (m-3-6);
\draw[->] (m-1-7) edge[bend left] (m-3-7);
\draw[->] (m-1-9) edge[bend left] (m-3-9);
\draw[->] (m-3-6) edge[bend left] (m-1-6);
\draw[->] (m-3-7) edge[bend left] (m-1-7);
\draw[->] (m-3-9) edge[bend left] (m-1-9);
\draw [decorate,decoration={brace,amplitude=5pt,mirror}] ($(m-3-1)+(-0.5em,-0.5em)$) -- ($(m-3-4)+(0.5em,-0.5em)$);
\draw [decorate,decoration={brace,amplitude=5pt,mirror}] ($(m-3-6)+(-0.5em,-0.5em)$) -- ($(m-3-9)+(0.5em,-0.5em)$);
\draw ($(m-3-1)!.5!(m-3-4)$) node[yshift=-2em,anchor=base] {$r_1$ points};
\draw ($(m-3-6)!.5!(m-3-9)$) node[yshift=-2em,anchor=base] {$2 r_2$ points};
\end{tikzpicture} \]
The complex $R\Gamma_c (X (\CC), \RR (n))$ consists of a single $G_\RR$-module
in degree $0$ given by
$$\RR (n)^{\oplus r_1} \oplus (\RR (n) \oplus \RR (n))^{\oplus r_2},$$
with the action of $G_\RR$ on the first summand $\RR (n)^{\oplus r_1}$ via the
complex conjugation and the action on the second summand
$(\RR (n) \oplus \RR (n))^{\oplus r_2}$ via
$(x,y) \mapsto (\overline{y}, \overline{x})$. The corresponding real space of
fixed points has dimension
\[ \dim_\RR H^0_c (G_\RR, X (\CC), \RR (n)) = \begin{cases}
r_2, & n \text{ odd},\\
r_1 + r_2, & n \text{ even},\\
\end{cases} \]
which indeed coincides with the vanishing order of the Dedekind zeta function
$\zeta (X,s) = \zeta_F (s)$ at $s = n < 0$.
On the motivic cohomology side, for $n < 0$ the groups
$H^i (X_\et, \ZZ^c (n))$ are finite, except for $i = -1$, where by
\cite[Proposition~4.14]{Geisser-2017}
\[ \rk_\ZZ H^{-1} (X_\et, \ZZ^c (n)) = \begin{cases}
r_2, & n \text{ odd},\\
r_1 + r_2, & n \text{ even}.
\end{cases} \]
\end{example}
\begin{example}
Suppose that $X$ is a variety over a finite field $\FF_q$. Then the vanishing
order conjecture is not very interesting, because the formula yields
\begin{align*}
\ord_{s=n} \zeta (X,s) & = \sum_{i \in \ZZ} (-1)^i \dim_\RR H^i_c (X(\CC), \RR (n))^{G_\RR} \\
& = \sum_{i \in \ZZ} (-1)^{i+1} \rk_\ZZ H^i (X_\et, \ZZ^c (n)) = 0,
\end{align*}
since $X (\CC) = \emptyset$, and also because $\mathbf{L}^c (X_\et, n)$
implies $\rk_\ZZ H^i (X_\et, \ZZ^c (n)) = 0$ for all $i$ in the case of
varieties over finite fields, as observed in
\cite[Proposition~4.2]{Beshenov-Weil-etale-1}. Therefore, the conjecture
simply asserts that $\zeta (X,s)$ has no zeros or poles at $s = n < 0$. This
is indeed the case. We have $\zeta (X,s) = Z (X,q^{-s})$, where
$$Z (X,t) = \exp \Bigl(\sum_{k\ge 1} \frac{\# X (\FF_{q^k})}{k}\,t^k\Bigr)$$
is the Hasse--Weil zeta function. According to Deligne's work on Weil's
conjectures \cite{Deligne-Weil-II}, the zeros and poles of $Z (X,s)$ satisfy
$|s| = q^{-w/2}$, where $0 \le w \le 2 \dim X$
(see e.g. \cite[pp.\,26--27]{Katz-1994}). In particular, $q^{-s}$ for
$s = n < 0$ is neither a zero nor a pole of $Z (X,s)$.
We also note that our definition of $H^i_\Wc (X, \ZZ(n))$, and pretty much
everything said above, only makes sense for $n < 0$. Already for $n = 0$, for
example, the zeta function of a smooth projective curve $X/\FF_q$ has a simple
pole at $s = 0$.
\end{example}
\begin{example}
Let $X = E$ be an integral model of an elliptic curve over $\QQ$. Then, as a
consequence of the modularity theorem
(Wiles--Breuil--Conrad--Diamond--Taylor), it is known that $\zeta (E,s)$
admits a meromorphic continuation satisfying the functional equation with the
$\Gamma$-factors discussed in Remark~\ref{rmk:archimedian-euler-factor}.
In this particular case $\ord_{s=n} \zeta (E,s) = 0$ for all $n < 0$. This is
consistent with the fact that
$\chi (R\Gamma_c (G_\RR, E (\CC), \RR (n))) = 0$.
Indeed, the equivariant cohomology groups $H^i_c (E (\CC), \RR (n))^{G_\RR}$
are the following:
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{rccc}
\hline
& $i = 0$ & $i = 1$ & $i = 2$ \\
\hline
$n$ even: & $\RR$ & $\RR$ & $0$ \\
$n$ odd: & $0$ & $\RR$ & $\RR$ \\
\hline
\end{tabular}
\end{center}
---see, for example, the calculation in \cite[Lemma~A.6]{Siebel-2019}.
\end{example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Special value Conjecture~$\mathbf{C} (X,n)$}
\label{sec:special-value-conjecture}
\begin{definition}
We define a morphism of complexes
\[ \smile\theta\colon R\Gamma_\Wc (X,\ZZ(n)) \otimes \RR \to
R\Gamma_\Wc (X,\ZZ(n)) [1] \otimes \RR \]
using the splitting \cite[Proposition~7.13]{Beshenov-Weil-etale-1}
\[ R\Gamma_\Wc (X, \RR (n)) \cong
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR) [-1] \oplus
R\Gamma_c (G_\RR, X (\CC), \RR (n)) [-1] \]
as follows:
\[ \begin{tikzcd}
R\Gamma_\Wc (X, \RR(n)) \ar{d}{\cong}\ar[dashed]{r}{\smile\theta} & R\Gamma_\Wc (X, \RR(n)) [1]\ar{d}{\cong} \\
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR) [-1] & \RHom (R\Gamma (X_\et, \ZZ^c (n)), \RR) \\[-2em]
\oplus & \oplus \\[-2em]
R\Gamma_c (G_\RR, X (\CC), \RR (n)) [-1]\ar{uur}[description]{Reg_{X,n}^\vee} & R\Gamma_c (G_\RR, X (\CC), \RR (n))
\end{tikzcd} \]
\end{definition}
\begin{lemma}
\label{lemma:smile-theta}