-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
83 lines (60 loc) · 3.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
import logging
import hydra
import numpy as np
import torch
import os
from model import ABAE
from reader import get_centroids, get_w2v, read_data_tensors
logger = logging.getLogger(__name__)
@hydra.main("configs", "config")
def main(cfg):
w2v_model = get_w2v(os.path.join(hydra.utils.get_original_cwd(), cfg.embeddings.path))
wv_dim = w2v_model.vector_size
y = torch.zeros((cfg.model.batch_size, 1))
model = ABAE(wv_dim=wv_dim,
asp_count=cfg.model.aspects_number,
init_aspects_matrix=get_centroids(w2v_model, aspects_count=cfg.model.aspects_number))
logger.debug(str(model))
criterion = torch.nn.MSELoss(reduction="sum")
if cfg.optimizer.name == "adam":
optimizer = torch.optim.Adam(model.parameters())
elif cfg.optimizer.name == "sgd":
optimizer = torch.optim.SGD(model.parameters(), lr=cfg.optimizer.learning_rate)
elif cfg.optimizer.name == "adagrad":
optimizer = torch.optim.Adagrad(model.parameters())
elif cfg.optimizer.name == "asgd":
optimizer = torch.optim.ASGD(model.parameters(), lr=cfg.optimizer.learning_rate)
else:
raise Exception("Optimizer '%s' is not supported" % cfg.optimizer.name)
for t in range(cfg.model.epochs):
logger.debug("Epoch %d/%d" % (t + 1, cfg.model.epochs))
data_iterator = read_data_tensors(os.path.join(hydra.utils.get_original_cwd(), cfg.data.path),
os.path.join(hydra.utils.get_original_cwd(), cfg.embeddings.path),
batch_size=cfg.model.batch_size, maxlen=cfg.model.max_len)
for item_number, (x, texts) in enumerate(data_iterator):
if x.shape[0] < cfg.model.batch_size: # pad with 0 if smaller than batch size
x = np.pad(x, ((0, cfg.model.batch_size - x.shape[0]), (0, 0), (0, 0)))
x = torch.from_numpy(x)
# extracting bad samples from the very same batch; not sure if this is OK, so todo
negative_samples = torch.stack(
tuple([x[torch.randperm(x.shape[0])[:cfg.model.negative_samples]]
for _ in range(cfg.model.batch_size)]))
# prediction
y_pred = model(x, negative_samples)
# error computation
loss = criterion(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if item_number % cfg.model.log_progress_steps == 0:
logger.info("%d batches, and LR: %.5f" % (item_number, optimizer.param_groups[0]['lr']))
for i, aspect in enumerate(model.get_aspect_words(w2v_model, logger)):
logger.info("[%d] %s" % (i + 1, " ".join([a for a in aspect])))
logger.info("Loss: %.4f" % loss.item())
try:
torch.save(model, f"abae_%.2f_%06d.bin" % (loss.item(), item_number))
except Exception as e:
logger.exception("Model saving failed.")
if __name__ == "__main__":
main()