forked from awasthiabhijeet/PIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tokenization.py
564 lines (475 loc) · 16.1 KB
/
tokenization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# code adapted from https://github.com/google-research/bert
# modification of tokenization.py for GEC
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import unicodedata
import six
import tensorflow as tf
from autocorrect import spell
from spellcheck_utils import can_spellcheck
import re
special_tokens = {"n't":"not", "'m":"am", "ca":"can", "Ca":"Can", "wo":"would", "Wo":"Would",
"'ll":"will", "'ve":"have"}
def containsNumber(text):
reg_ex = re.compile(r".*[0-9].*")
if reg_ex.match(text):
#print("{} contains numbers".format(text))
return True
else:
return False
def containsMultiCapital(text):
reg_ex=re.compile(r".*[A-Z].*[A-Z].*")
if reg_ex.match(text):
#print("{} conatains multiple capitals".format(text))
return True
else:
return False
def checkAlternateDots(text):
if text[0]==".":
return False
alt = text[1::2]
if set(alt) == {'.'}:
#print("{} contains alternate dots".format(text))
return True
else:
return False
def end_with_dotcom(text):
if len(text)>=4 and text[-4:]==".com":
#print("{} contains .com in the end".format(text))
return True
else:
return False
def starts_with_www(text):
reg_ex = re.compile(r"^www\..*")
if reg_ex.match(text):
#print("{} starts with www.".format(text))
return True
else:
return False
def contains_slash(text):
if "/" in text:
#print("{} contains /".format(text))
return True
else:
return False
def contains_percent(text):
if "%" in text:
#print("{} contains %".format(text))
return True
else:
return False
def contains_ampersand(text):
if "&" in text:
#print("{} contains &".format(text))
return True
else:
return False
def contains_at_rate(text):
if "@" in text:
#print("{} contains @".format(text))
return True
else:
return False
def contains_square_brackets(text):
if "[" in text or "]" in text:
#print("{} contains ] or [".format(text))
return True
else:
return False
def last_dot_first_capital(text):
if len(text) > 1 and text[-1]=="." and text[0].upper()==text[0]:
#print("{} has dot as last letter and it's first letter is capital".format(text))
return True
else:
return False
def check_smilies(text):
if text in [":)",":(",";)",":/",":|"]:
#print("{} is a smiley".format(text))
return True
else:
return False
def do_not_split(text, mode="test"):
if mode == "train":
#print("************************* SPLIT IS ON *************************************")
return False
if containsNumber(text) or containsMultiCapital(text) or checkAlternateDots(text) \
or end_with_dotcom(text) or starts_with_www(text) or contains_at_rate(text) \
or contains_slash(text) or contains_percent(text) or contains_ampersand(text) \
or contains_square_brackets(text) \
or last_dot_first_capital(text) \
or check_smilies(text):
return True
else:
return False
'''
def contains_round(text):
if ")" in text or "(" in text:
print("contains_right_round firing on {}".format(text))
return True
else:
return False
'''
def spell_check(text):
if not can_spellcheck(text):
return None
result = spell(text)
return result
'''
if (text[0].isupper() == result[0].isupper()): #avoid case change due to spelling correction
return result
else:
return None
'''
def check_alternate_in_vocab(word,vocab):
assert word not in vocab
if word == word.lower():
tmp = word[0].upper() + word[1:]
else:
tmp = word.lower()
if tmp in vocab:
#print("replacing {} with its alternate {}".format(word, tmp))
return tmp
else:
return None
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with tf.gfile.GFile(vocab_file, "r") as reader:
while True:
token = convert_to_unicode(reader.readline())
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, vocab=self.vocab)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text, mode="test"):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text,mode):
#print("Hello")
if (len(token) > 1 and do_not_split(token,mode)) or (token in special_tokens):
split_tokens.append(token)
else:
wordpiece_tokens = self.wordpiece_tokenizer.tokenize(token)
if len(wordpiece_tokens) > 1:
if token.capitalize() in self.vocab:
split_tokens.append(token.capitalize())
elif token.lower() in self.vocab:
split_tokens.append(token.lower())
elif token.upper() in self.vocab:
split_tokens.append(token.upper())
elif len(wordpiece_tokens) <=3:
split_tokens.extend(wordpiece_tokens)
else:
split_tokens.append(token)
else:
split_tokens.append(token)
return split_tokens
def convert_tokens_to_ids(self,items):
output = []
for item in items:
if item in special_tokens:
output.append(self.vocab[special_tokens[item]])
elif item in self.vocab:
output.append(self.vocab[item])
else:
if item.capitalize() in self.vocab:
output.append(self.vocab[item.capitalize()])
elif item.lower() in self.vocab:
output.append(self.vocab[item.lower()])
elif item.upper() in self.vocab:
output.append(self.vocab[item.upper()])
else:
output.append(self.vocab["[UNK]"])
return output
#def convert_tokens_to_ids(self, tokens):
# return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True, vocab=None):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
self.vocab = vocab
def tokenize(self, text, mode="test"):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
if len(token)==1 or do_not_split(token,mode) or (token in special_tokens):
split_tokens.append(token)
else:
split_tokens.extend(self._run_split_on_punc(token))
use_spell_check=False
if use_spell_check:
split_tokens = self._run_spell_check(split_tokens)
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_spell_check(self, tokens):
corrected_tokens = []
for word in tokens:
output_word = None
if (word in self.vocab) or (word.lower() in self.vocab) or (word.capitalize() in self.vocab) or (word.upper() in self.vocab) or do_not_split(word,"test"):
output_word = word
else:
spell_checked_word = spell_check(word)
if spell_checked_word:
if (spell_checked_word in self.vocab):
#print("spell check FINDS word in VOCAB --- {} --> {}".format(word, spell(word)))
output_word=spell_checked_word
else:
if word[0].isupper():
# "this case should never be encountered because spell_checked_word is None for cased words
print("Error this should not be encountered")
exit(1)
else:
output_word=spell_checked_word
#print("Spell check DID NOT FIND WORD in VOCAB --- {} --> {}".format(word, spell(word)))
#corrected_tokens.append(spell_checked_word)
#print("{} not in vocab and COULD NOT BE SPELL CHECKED".format(word))
#corrected_tokens.append(word)
else:
output_word=word
assert output_word!=None
#if output_word != word:
#print("{} --------------------------------> {}".format(word,output_word))
corrected_tokens.append(output_word)
return corrected_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False