-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_loader.h
63 lines (57 loc) · 1.97 KB
/
mnist_loader.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#pragma once
#include <fstream>
#include <string>
#include <charconv>
#include "csv_reader.h"
#include "matrix2d.h"
class mnist_loader
{
public:
constexpr static size_t inputs_size = 784;
constexpr static size_t outputs_size = 10;
using samples_t = float;
using train_value = std::pair<VectorRow<samples_t, inputs_size>, VectorRow<samples_t, outputs_size>>;
private:
std::vector<train_value> wholeData;
public:
mnist_loader(const std::string& file_name)
{
std::ifstream fs(file_name);
wholeData.reserve(100);
for (const auto& example : csv::range(fs))
{
const auto get_int = [&example](int index)
{
const auto sv = example[index];
int v = -1;
std::from_chars(sv.data(), sv.data() + sv.size(), v);
return v;
};
const auto sz = example.size();
train_value val;
val.second = make_output_vector(get_int(0));
for (size_t i = 1; i < sz; ++i)
*(val.first.begin() + i - 1) = (get_int(i) / static_cast<samples_t>(255))
* static_cast<samples_t>(0.99) + static_cast<samples_t>(0.01);
wholeData.push_back(std::move(val));
}
}
~mnist_loader() = default;
const auto& train_data() const
{
return wholeData;
}
static VectorRow<samples_t, outputs_size> make_output_vector(int active)
{
VectorRow<samples_t, outputs_size> r;
std::fill(std::begin(r), std::end(r), static_cast<samples_t>(0.001));
r.at(active, 0) = static_cast<samples_t>(0.999);
return r;
}
static std::string parse_output(const VectorRow<samples_t, outputs_size>& inp)
{
const auto it = std::max_element(inp.begin(), inp.end());
const int d = std::distance(inp.begin(), it);
return "Value: " + std::to_string(d) + "; with float = " + std::to_string(*it);
}
};